Found 2 talks width keyword stars spots

FJ5G3U4JK6g-thumbnail
Tuesday June 8, 2021
IAC

Abstract

In this talk I'll present results from a recent paper in which we have developed a new analysis technique for solar spectra based on artificial neural networks. Our first test applications yielded some unexpected and interesting results. The fine-scale network of temperature enhancements in the quiet middle and upper photosphere have a reversed pattern. Hot pixels in the middle photosphere, possibly associated with small-scale magnetic elements, appear cool at higher levels (log(tau)=-3 and -4), and vice versa. We also find hot arcs on the limb side of magnetic pores, which we interpret as the first direct observational evidence of the "hot wall" effect. Hot walls are a prediction of theoretical models from the 1970s which had not been observed until now.

mmhb317oBBA-thumbnail
Friday November 19, 2010
Queen's University Belfast, Ireland

Abstract

The RV method is responsible for discovering the majority of planets that orbit stars other than our Sun. However, one problem with this technique is that stellar jitter can cause RV variations that mimic or mask out a planet signature. There have been several instances in the past when stars have shown periodic RV variations which are firstly attributed to a planet and later found to be due to stellar spots, e.g. BD+20 1790 (Figueira, P et al. 2010) and CJ674 (Turnball et al. 204). So far the method of choice to overcome these problems is to avoid observing stars which show levels of high activity. However, this does not solve the problem: it merely avoids it. We have therefore been developing a code which separates out stellar jitter from the RVs to enable active planets to be looked at for planets. I will talk about our technique as well as show some exciting preliminary results.

« Newer Older »