Found 13 talks width keyword X-ray binaries

4-WXSHynTXw-thumbnail
Thursday March 30, 2023
University of Southampton

Abstract

 

Disc winds and jets are ubiquitous among accreting systems on all scales, from active galactic nuclei (AGN) down to young stellar objects. They represent a key mechanism through which these systems interact with their environment (“feedback") and may be responsible for triggering the mysterious state changes observed in X-ray binary stars (XRBs).

Transient low-mass X-ray binaries (LMXBs), harbouring a black hole or a neutron star, provide us with a natural laboratory for studying the connection(s) between accretion discs, jets and winds.  These systems undergo outbursts, during which they brighten dramatically across the whole electromagnetic spectrum. The outbursts typically last hundreds of days, recur on timescales of decades, and reflect a sudden increase in the accretion rate onto the compact object. Over the course of an outburst, LMXBs exhibit two distinct spectral states. These spectral states are thought to be a consequence of different accretion geometries close to the central object.

Remarkably, the two distinct accretion states also appear to produce two distinct types of outflows. Steady compact radio jets are only seen in the hard state, whereas evidence of disc winds originally came in the form of blue-shifted X-ray absorption lines associated with Fe ions detected only during the soft state. However, recent observations of disc winds in the far-UV, optical and NIR lines reveal a multiphase nature of these outflows that may be present across the entire outburst.  

I will discuss the current status of disc winds in LMXBs with special emphasis in the latest results from far-UV spectroscopy obtained with the Hubble Space Telescope.

 

 

Zoom: https://rediris.zoom.us/j/86826646040?pwd=UmpEZmdKYW90QUpVelFKZitzTzhKUT09
Meeting ID: 868 2664 6040
Passcode: 610738

 

Youtube: https://youtube.com/live/4-WXSHynTXw?feature=share


16p4a0ws2nA-thumbnail
Tuesday November 29, 2022
University of Bonn; Argelander-Institut für Astronomie

Abstract

Most high mass X-ray binaries contain neutron stars as companions to an OB star, while high mass black hole binaries are very rare. We use rapid binary population synthesis to predict the number and properties of OB stars with compact companions, while varying uncertain physics assumptions. We find that synthetic populations which agree with the population properties of Be stars, Wolf-Rayet stars, and neutron stars forecast a large and so far undetected population of massive black hole binaries with orbital periods between a few days and 1000 days. To find or rule out this population is key for quantifying the contribution of isolated binaries to the merging massive black holes found through their gravitational wave emission.


ilot4_MnvFA-thumbnail
Friday October 24, 2014
IAC-NOT

Abstract

High Mas X-ray Binary Systems are important sources of information for many astrophysical fields of research. They are composed by a compact object (black hole or neutron star) and an early type star (usually known as the optical companion). Mass transfer from the later onto the compact companion ends up as very bright emission of high energy photons. The multi-wavelength approach becomes mandatory in order to understand these systems: a) Optical and IR bands are used to characterize the optical companion, b) Mass transfer and the local ambient matter in these systems can be traced in UV and IR bands, c) The behavior and properties of the compact companion can be inferred from X-rays/gamma-rays observations, etc. We will review how this approach helps to understand the behavior of several peculiar systems, including the discovery of optical counterparts, the estimation of compact object masses, the characterization of the ambient matter (local extinction), etc.


2IfGgQbaIow-thumbnail
Tuesday February 11, 2014
IAC

Abstract

Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions. Currently known black holes are fed by material stripped from a low-mass star or by the wind of a massive companion. Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars. However, among the ~80 Be X-ray binaries known in the Galaxy (~150 including the Magellanic Clouds), only pulsating neutron stars have been found as companions, which is known as the missing Be/black-hole X-ray binary problem. In this talk I present the first dynamical evidence for a 3.8-6.9 Msun black hole orbiting the Be star and gamma-ray candidate MWC 656 (=AGL J2241+4454). This discovery has been allowed by the detection of a HeII emission line from an accretion disc encircling the black hole. We find the black hole is X-ray quiescent with Lx<1.6 × 10−7 times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect by conventional X-ray surveys and may be more abundant than predicted by population synthesis models.

 






A2pNMza_QIs-thumbnail
Tuesday May 14, 2013
IAC

Abstract

Neutron stars in low-mass X-ray binaries (NS-LMXBs) are unique laboratories of accretion physics, strong gravity and ultra-dense matter. I will give an overview of what we have learned in recent years by studying accretion flows and thermonuclear bursts in these systems.

I will first present and discuss the main result of a systematic study of their different accretion states: the discovery of a correlation between luminosity and spectral hardness. I will also show ongoing work on the connection between active (1-100% of the Eddington luminosity) and quiescent (down to 10^-6 times Eddington) phases of NS-LMXBs.

In the second part I will focus on the relation between mass accretion rate and the recurrence time of thermonuclear bursts (explosive nuclear burning on the neutron star surface), presenting results at the lowest and highest mass accretion rates. In particular, I will argue that rotation plays a larger role than we thought in setting the nuclear burning regimes on an accreting neutron star.


cr9v05e3ZCo-thumbnail
Wednesday March 6, 2013
IAC

Abstract

X-ray transients are binary systems composed by a 'normal' star which is transfering mass onto a compact object (either a black hole or a neutron star) through Roche lobe overflow. These systems show sporadic outburst episodes and long quiescence states, being ideal systems to search for stellar-mass black holes. Different studies predict a Galactic population of ~10^3-10^4 X-ray transients, however, there are only 18 stellar-mass black holes dynamically confirmed (and other ~32 candidates whichc share similar timing and spectral properties).

In this talk I'll present the case of Swift J1357.2-0933, a new X-ray transient discovered in 2011. Our analysis shows that Swift J1357.2-0933 is the first black hole transient seen at a large inclination (>75º). High time resolution lightcurves show dips or eclipses produced by a vertical structure present in the inner accretion rather than the companion star. Some dips display up to ~50% reduction of flux in ~2min (~30% reduction of flux in 7s). Moreover, the dips present a recurrence period of a few minutes which increases with time. This can only be explained by the expansion of the obscuring structure outward in the accretion. Swift J1357.2-0933 could be the prototype of an hytherto Galactic population of black hole transients with large inclinations.


-thumbnail
Tuesday January 24, 2012
Institut de Ciencies de l'Espai, Spain

Abstract

I will review our current knowledge of soft gamma repeaters (SGR) and anomalous X-ray pulsars (AXP), two peculiar classes of pulsars believed to be 'magnetars', i.e. neutron stars powered by a huge magnetic field. Recent studies of transient events from SGRs and AXPs allowed a large jump in our understanding of these objects, although they also prompted new unanswered questions. In particular, the recent discovery of a low magnetic field magnetar is causing a re-think of some of the basic ingredients of the magnetar model.


zG7d08MwBRs-thumbnail
Friday May 20, 2011
Harvard-Smithsonian Center, USA.

Abstract

In his public talk, Prof. Narayan will summarize our knowledge of Black Holes in the universe. He will describe how Black Holes are discovered, how their properties are measured, and what the results mean. He will also discuss the many ways in which Black Holes influence their surroundings and the profound effect they have had on the evolution of the universe.


JiA2OcY7ea4-thumbnail
Thursday May 19, 2011
Harvard-Smithsonian Center for Astrophysics, USA

Abstract

An astrophysical black hole is completely described with just two parameters: its mass and its dimensionless spin. A few dozen black holes have mass estimates, but until recently none had a reliable spin estimate. The first spins have now been measured for black holes in X-ray binaries. The talk will describe the method used to make these measurements and will discuss implications of the results obtained so far.


3stx_-RFGT4-thumbnail
Thursday November 4, 2010
CEA, Service d'Astrophysique, France

Abstract

The so called "dark ages" of the universe began about 400.000 years after the Big Bang as matter cooled down and space became filled with neutral hydrogen for hundreds of millions years. How the Universe was heated and reionized during the first billion years after the Big Bang is a question of topical interest in cosmology. I will show that current theoretical models on the formation and collapse of primordial stars suggest that a large fraction of massive stars should have imploded, forming high-mass black hole X-ray binaries. Then, I will review the recent observations of compact stellar remnants in the near and distant universe that support this theoretical expectation, showing that the thermal (UV and soft X-rays) and non-thermal (hard X-rays, winds and jets) emission from a large population of stellar black holes in high mass binaries heated the intergalactic medium over large volumes of space, complementing the reionization by their stellar progenitors. Feedback from accreting stellar black holes at that epoch would have prevented the formation of the large quantities of low mass dwarf galaxies that are predicted by the cold dark matter model of the universe. A large population of black hole binaries may be important for future observations of gravitational waves as well as for the existing and future atomic hydrogen radio surveys of HI in the early universe.

« Newer 1 | 2 Last >>