Found 219 talks archived in Galaxies
Abstract
Dwarf spheroidal (dSph) galaxies are the smallest, closest and most abundant galaxies in the Universe and therefore excellent laboratories to study star formation (SF) history and chemical evolution on the smallest
scales. However, the complexity within---and variations between---these objects are poorly understood, not least because the vast majority of present-day data is restricted to the most central regions of these systems.
Thus, the scope of this talk is to present the results from our chemodynamical analysis (i.e., combining chemical abundances, stellar
ages, and precise dynamical measurements from high-resolution spectra) of the outer regions of Fornax and to put them in a general context of the chemical evolution in dSphs and their key-regulating factors. On this basis, possible (and impossible) evolutionary scenarios for Fornax are discussed and compared with model predictions. Furthermore, Fornax is one amongst very few dSphs with an own globular cluster population. In the last part of my talk I use the results from our analysis and discuss
ongoing projects designed to address the impact of globular clusters on the evolution of this galaxy, and vice versa.
Abstract
One of the important questions in extragalactic astronomy concerns the debate between nature and nurture scenarios. Are the observed galaxy local properties the end product of the different conditions at birth or the product of the interactions, or other local processes, since a galaxy is not an isolated object? In this talk I will present the results of the analysis of some galaxy properties, morphologies and mass functions, obtained comparing, for the first time in a consistent manner, galaxies in the widest range of environments at low redshift (groups, clusters, binary systems, isolated galaxies). The aim was to understand the most important factors that drive galaxy evolution, trying to disentangle the importance of galaxy mass and global environment.
In addition I will present the first results concerning the two projects in which I am involved at IAC: the ALBA project, aimed to explore the signs of a proto-cluster at z~6.5, and the analysis of dust emission of a sample of local tadpole galaxies.
Abstract
Stellar population synthesis has reached a high degree of sophistication that has been exploited to understand to a certain extent the mechanisms of formation, assembling, and evolution of galaxies in our universe. Progress is based on solid results in the field of stellar evolution and spectrophotometric observations of large numbers of stars and galaxies. However, there are certain phases of stellar evolution, like the thermally pulsing asymptotic giant branch (TP-AGB) phase, the Wolf-Rayet stage, and the presence of interacting binaries, whose treatment is either ignored or extremely simplified in galaxy evolution models due to the uncertainties in their description. In this talk I will present results from models that add the state of the art in the treatment of these evolutionary phases to traditional population synthesis models.
Abstract
FeII comprises up to one third of the line emission in AGNs. For that reason it is an important coolant that needs to be taken into accountto fully understand the energetics of the broad line region (BLR). In thistalk I will discuss new approaches to study the excitation mechanisms ofthe FeII based on a semi-empirical template we derived in thenear-infrared region (NIR). We correlate the strength of the NIR andoptical iron lines to assess the relative contribution of the differentmechanisms that produces that emission. We found that in all casesLy_alpha fluorescence plays an important role, being a process that needsto be considered in any approach aimed at understanding this complexemission. We also compare the width of the individual FeII lines with thatof other lines emitted in BLR. Our results confirm previous assumptionsand results from variabilty studies that the gas responsible for the FeIIemission is the outer portion of the BLR.
Abstract
Cold gas streaming along the dark-matter filaments of the cosmic web is predicted to be the major provider of resources for disc buildup and star formation in massive galaxies in the early universe. We use hydrodynamical simulations to study to what extent these cold streams are traceable in the extended circum-galactic environment of galaxies via Ly alpha emission, Ly alpha absorption and selected low ionisation metal absorption lines. We predict the strength of the absorption signal produced by the streams and find that it is consistent with observations in high redshift galaxies. The characteristics of the Ly alpha emission of our simulated galaxies are similar in luminosity, morphology and extent to the observed Ly alpha blobs, with distinct kinematic features. We analyse the characteristics of the cold streams in simulations and present scaling relations for the amount of infall, its velocity, distribution and its clumpiness and compare our findings with observations.
Abstract
The exponential radial profiles of spiral galaxies have been observed for decades with various explanations offered, but none of these explanations hold up now that the profiles have been traced to 10 scale lengths in some cases. Profiles with breaks also have their outer parts remarkably close to exponential. This is true in both spirals and dwarfs, with a particular problem for non-barred dwarfs where there are no strong torques or shears in the stellar disks for radial scattering. We have shown that scattering from disk clumps can make exponentials, and indeed dwarfs have fairly massive clumps and irregularities in their HI distributions. Spiral waves also have clumps in the form of persistent wave enhancements at corotation and at points of wave interference. This talk reviews the observations of exponential profiles and profile breaks in spiral and dwarf galaxies, and considers various theories to explain them.
Abstract
Galaxies at redshifts z~2-5 are dominated by clumpy morphologies instead of the more familiar elliptical and spiral types seen in the local Universe. The clumpy galaxies are gas-rich and highly turbulent, with star-forming regions 100 times more massive than in today’s galaxies. Clumpy galaxies should evolve into spirals and barred spirals when the disks become less turbulent. We find transitional types midway between clumpy and spiral, primarily around z~1-2. We observed local analogs of these transitional spirals in the Kiso Survey of Ultraviolet Galaxies, whose clumps are comparable in mass and surface density to the clumps at high redshift. We also find local analogs of high redshift tadpole galaxies, whose measured low metallicities in star-forming regions suggest ongoing external gas accretion.
Abstract
Many stars are observed to belong to multiple systems. Interactions between binary stars may change the evolutionary track of a star, creating atypical stars like Blue Stragglers and explaining the existence of extreme horizontal branch (EHB) stars. Using evolutionary population synthesis models including binary star evolutionary tracks from Hurley et al. and including the two He white dwarfs merger channel, suggested by Han et al., for the formation of EHB stars we compute a series of isochrones which include these atypical stars. We derive the integrated spectral energy distributions and the colors corresponding to these populations. The predictions of this model are in good agreement with traditional population synthesis models, except when the spectrum of the stellar population is dominated by binary stars or their products, e.g., EHB stars in the ultraviolet (UV) of early-type galaxies (ETGs) (Hernández-Pérez and Bruzual 2013). Using this binary population synthesis model we reproduce successfully the observed colour-colour diagram of a sample of 3417 ETGs observed both in the optical (SDSS -DR8) and the UV (GALEX-GR6) (Hernández-Pérez and Bruzual 2014). I will show how important is to consider binary interactions in evolutionary synthesis models.
Abstract
I will talk about how resolved stellar populations in the nearby Local Group dwarf galaxies have been used to study the detailed chemical, kinematic and star formation history of these systems and the link to the properties of the Milky Way. I will mainly discuss the results from the DART spectroscopic surveys of nearby dwarf spheroidal galaxies, determining detailed abundances, looking for CEMP stars and also combining spectroscopy with colour-magnitude diagram analysis to measure the time scale for star formation and chemical evolution.
Abstract
Any successful model of galaxy formation needs to explain the low rate of star formation in the small progenitors of today’s galaxies. This inefficiency is necessary for reproducing the low stellar-to-virial mass fractions. A possible driver of this low efficiency is the radiation pressure exerted by ionizing photons from massive stars. The effect of radiation pressure in cosmological, zoom-in galaxy formation simulations is modelled as a non-thermal pressure that acts only in dense and optically thick star-forming regions. The main effect of radiation pressure is to regulate and limit the high values of gas density and the amount of gas available for star formation. By using these simulations, I will address the early formation of compact spheroids by violent disc instabilities (VDI). Due to the inefficiency of star formation, this process is gas rich, so the dissipation naturally leads to compact spheroids. These VDI-driven spheroids, much like merger-driven spheroids, have steep surface density profiles, consistent with a classical, de-Vaucouleurs profile at all times.
Upcoming talks
- Dark satellites as cosmological probes and gamma-ray dark matter targetsDr. Miguel Ángel Sánchez CondeThursday January 30, 2025 - 10:30 GMT (Aula)
- Caracterización de curvas de luz de supernovas superluminosas ricas en hidrógeno.Dr. Priscila PessiThursday February 6, 2025 - 10:30 GMT (Aula)