Found 219 talks archived in Galaxies
Abstract
Vimos Public Extragalactic Redshift Survey (VIPERS) is a spectroscopic survey designed to investigate the spatial distribution of ~90k galaxies on redshift 0.4<z<1.2. The catalogue of spectroscopic observations, combined with auxiliary photometric data, is perfect for evolutionary studies of different types of galaxies. But also for tracing rare objects. One of them are the so-called “red nuggets”, progenitors of the most massive galaxies in the local Universe. The discovery of red nuggets - highly massive, passive and extremely compact galaxies - at high redshift challenged the leading cosmological models, as they do not fit into the evolutionary paths of passive galaxies. Taking into account that the galaxies' mergers are stochastic events, it is possible that some red nuggets remain relatively unaltered for billions of years. Those survivors constitute a group of unique galaxies in the local Universe, commonly named “relics”. Despite numerous studies dedicated to red nuggets and relics, the link between the population of compact, massive, passive galaxies in the early Universe and their remnants in the local Universe, is still poorly understood.
In my talk I will present the first spectroscopically selected catalogue of red nuggets at the intermediate redshift. It is the most extensive catalogue of this kind of galaxies above redshift z > 0.5. Selected under the most strict criteria, the group of 77 objects consists of a statistically important sample, which allows for analysis of physical properties of those rare passive giants. I will discuss the influence of compactness criteria on the sample size. Moreover I will present VIPERS red nuggets number densities and discuss the environmental preferences of those exceptional galaxies.
Abstract
The formation of the first galaxies in the Universe is the new frontier of both galaxy formation and reionization studies. In fact, we will soon directly observe primeval galaxies thanks to the James Webb Space Telescope, and witness the reionization process through 21cm intensity mapping experiments. This unique moment in human history creates a fierce new challenge, i.e. to simultaneously understand in a unique and coherent picture the processes of galaxy formation and reionization, and – crucially – their connection. The latter, in particular, has escaped past numerical efforts. In this talk I will present the first results on this front from an years-long effort geared toward achieving such comprehensive picture, culminated in the Thesan suite of cosmological radiation-magneto-hydrodynamical simulations. I will briefly introduce the features of Thesan, highlighting the successes and failures of its physical model. Thesan produces realistic galaxy populations thanks to state-of-the-art physics, including self-consistent dust production+destruction and radiation transport. I will then show how Thesan can, for the first time, reproduce the connection between IGM and galaxies, as measured from the modulation of the Lyman-alpha flux around galaxies. Finally, I will chart the way forward towards and even deeper understanding of the emergence of the first structures in the Universe.
Abstract
The first Gigayears of our Galactic halo can be probed by using ancient stellar populations as traced by RR Lyrae stars. Today, with the advancement in our knowledge of RR Lyrae properties belonging to the Halo and to Milky Way satellite systems (Globular clusters and dwarf galaxies) we are able
to provide solid constraints on the link between these stellar systems. Here, we present some recent results concerning the Halo formation by using a detailed evolutionary analysis of RR Lyrae stars for which chemical abundances are available.
Abstract
With the aim of detecting cosmological gas accretion onto galaxies of the local Universe, we examined the Ha emission in the halo of the 164 galaxies in the field of view of MUSE-Wide (Urrutia+19) with observable Ha (redshift < 0.42). An exhaustive screening of the Ha images led us to select 118 reliable Ha emitting gas clouds. To our surprise, around 38 % of the time the Ha line profile shows a double peak centered at the rest-frame of the corresponding galaxy. We have explored several physical scenarios to explain this Ha emission, among which accretion disks around rogue intermediate mass black holes (IMBHs) fit the observations best. I will describe the data analysis (to discard, e.g, instrumental artifacts and high redshift interlopers), the properties of the Ha emitting clumps (their fluxes, peak separation, and spatial distribution with respect to the central galaxy), and the arguments leading to the IMBH hypothesis rather than other alternatives (e.g., cosmological gas, expanding bubbles, or shocks in the circum galactic medium).
Abstract
Gravitational dynamical friction affecting the orbits of globular clusters (GCs) was studied extensively as a possible formation mechanism for nuclear star clusters in galaxies. In well-known examples that showcase this phenomenon, like the Milky Way and M31 galaxies, the medium which affects the dynamical friction is dominated by bulge stars. In comparison, the case for dynamical friction in dark matter-dominated systems is much less clear. A puzzling example is the Fornax dwarf galaxy, where the observed positions of GCs have long been suspected to pose a challenge for dark matter, dynamical friction theory, or both. We search for additional systems that are dark matter-dominated and contain a rich population of GCs, offering a test of the mechanism. A possible example is the ultra diffuse galaxy NGC5846-UDG1: we show that GC photometry in this galaxy provide evidence for the imprint of dynamical friction, visible via mass segregation. If confirmed by future analyses of more GC-rich UDG systems, these observations could provide a novel perspective on the nature of dark matter.
Abstract
Black hole feedback is central to our theoretical understanding of galaxies. The energy and momentum radiated by growing supermassive black holes is expected to regulate the baryonic cycle, in particular, within massive dark matter halos, modulating gas cooling and thus star formation. Observational evidence of the role of black hole feedback remains, however, scarce, casting serious doubt on our current galaxy formation modelling. In this talk I will summarize our recent efforts trying to empirically characterize the effect of black hole feedback on galactic scales. I will describe how the combination of detailed stellar population analysis and well-known scaling relations can be used to actually constrain the physical processes behind black hole feedback. Moreover, I will also present evidence of black hole feedback acting beyond the host galaxy, further supporting the importance of black hole feedback in regulating the evolution of galaxies.
Abstract
In this talk, I will review the recently discovered infinite-dimensional symmetries that emerge in the near horizon region of black hole horizons. I will explain how the conserved charges associated with those symmetries carry information of the black hole, and, in particular, about its thermodynamic properties. I will focus on the case of magnetized black holes; namely, black holes that are embedded in strong magnetic fields.
Abstract
Abstract
Recent years have seen impressive development in cosmological simulations for spiral disc galaxies like the Milky Way. I present a suite of high-resolution magneto-hydrodynamic simulations that include many physical processes relevant for galaxy formation, including star formation, stellar evolution and feedback, active galactic nuclei and magnetic fields. I will discuss how these processes affect the formation of galactic discs, and what these simulations can tell us about the formation of the Milky Way, such as the properties of the Galaxy's putative last significant merger and its effect on the formation of the thick disc and stellar halo.
Abstract
Youtube:
https://youtu.be/61vvPaHQft4
Upcoming talks
- Properties and origin of thick disks in external galaxiesDr. Francesca PinnaThursday January 16, 2025 - 10:30 GMT (Aula)
- Seminar by Luigi TibaldoLuigi TibaldoTuesday January 21, 2025 - 12:30 GMT (Aula)