Found 62 talks archived in Particle astrophysics, physical data and processes
Abstract
New results on the antiproton-to-proton and positron-to-all electron ratios over a wide energy range (1 – 100 GeV) have been obtained by the PAMELA mission. These data are mainly interpreted in terms of dark matter annihilation or pulsar contribution. The instrument PAMELA, in orbit since June 15th, 2006 on board the Russian satellite Resurs DK1, is daily delivering to ground 16 Gigabytes of data. The apparatus is designed to study charged particles in the cosmic radiation, with a particular focus on antiparticles for searching antimatter and signals of dark matter annihilation. A combination of a magnetic spectrometer and different detectors allows antiparticles to be reliably identified from a large background of other charged particles. The talk will illustrate the most important scientific results obtained by PAMELA, together with some of the more recent theoretical interpretations.
Abstract
Of the 342 planets discovered so far orbiting other stars, 58 'transit' the stellar disk, meaning that they can be detected by a periodic decrease in the starlight flux. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration toward the characterization of exoplanetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflected spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modeling. We also find the fingerprints of the Earth's ionosphere and of the major atmospheric constituent, diatomic nitrogen (N2), which are missing in the reflected spectrum. Our results indicate that the technique of transit spectroscopy of rocky planets may be a very powerful tool for exoplanet atmospheric characterization, and is likely to provide the first detection of a habitable exobiosphere.Abstract
There is a multitude of photochemical processes occurring in a planet's atmosphere. Some of these processes occur with an excess of energy and lead to products in the form of excited atoms, molecules and ions.In specific cases, these gases radiate at wavelengths that range from the UV to the NIR. Solar light is the ultimate cause of these airglow emissions, but traditionally one distinguishes between the day airglow (dayglow), and the night airglow (nightglow). The contribution of the Sun to the excitation of the emitting gas is more immediate in the day glow than in the nightglow. The airglow makes it possible to remotely investigate the chemical kinetics, energetic balance and dynamics of a planetary atmosphere. In the talk, I will go over some of the air glow missions that are known to exist in the atmospheres of the Earth, Mars and Venus. The examples illustrate some of my recent work, and include theoretical modelling and the interpretation of observational data. There is a long record of contributions to the nightglow from observations carried out at ground-based telescopes. I will briefly comment some of these.Abstract
En una parte preliminar se recordarán unos pocos hechos experimentales obtenidos durante las últimas décadas, con énfasis en fenómenos puramente cuánticos como el entrelazamiento y el teletransporte, y también algunos hechos matemáticos elementales, con énfasis en las matrices hermíticas y unitarias. En una segunda parte se presentará un modelo matemático de la noción de q-ordenador y de conceptos subordinados como puertas q-lógicas, q-computación y q-algoritmos programas, con énfasis en los ejemplos, incluyendo la q-transformada de Fourier y el q-algoritmo de Shor de factorización en tiempo polinómico de números enteros positivos. A continuación se sumarizará un enfoque axiomático de la mecánica cuántica y se usará para relacionar las q-nociones anteriores con sus posibles realizaciones físicas, con énfasis en algunos problemas abiertos y en posibles líneas de trabajo futuro. La base de este material es la tesis de máster de Juanjo Rué, "Un modelo matemático para la computación cuántica: fundamentos, algoritmos y aplicaciones" (julio de 2007), dirigida por Lluís Torner y el conferenciante.
Abstract
The colour distribution of globular cluster (GC) systems in the majority of galaxies is bi/multimodal in optical colours. It is widely accepted that multiple populations differing in metallicity exist implying different mechanisms/epochs of star formation, with small age differences still being allowed due to the large current uncertainties. Recently Yoon, Yi and Lee (2006) challenged this interpretation stating that the metallicity bimodality is an artifact of the horizontal branch (HB) morphologies that can transform a unimodal metallicity distribution in a bimodal (optical) colour distribution. The combination of optical and near-infrared (NIR) colours can in principal break the age/metallicity degeneracy inherent in optical colours alone, allowing age estimates for a large sample of GCs possible at the same time. It has been shown that the colours that best represent the true metallicity distributions are the combination of optical and NIR (eg. Puzia et al. 2002, Cantiello & Blakeslee 2007). Therefore studying GCs in the NIR is crucial to reveal their true metallicity distributions. We are currently building a homogeneous optical/NIR data set of GC systems in a large sample of elliptical and lenticular galaxies. I will present the sample, an attempt to estimate overall ages and metallicities for the GC systems and the optical/NIR colour distributions.Abstract
Primordial helium might seem to be just a tiny piece in our understanding of how the Universe was born; still, it is a piece that must fit in if we are to ensure that the whole Big Bang scenario is consistent. During the last decade, a significant effort has been aimed at achieving the necessary accuracy to achieve this goal. While we still do not have a firm handle on it, we have learned quite a few things on the way. The talk will provide a review of this quest, highlighting the uncertainties that still remain and the feedback that it has provided to our knowledge of how H II regions work.Abstract
In the Λ-CDM galaxy formation paradigm, the star formation history of a galaxy is coupled to the total mass of its dark matter halo through processes like galaxy-galaxy merging, satellite accretion, and gas retention. Globular cluster formation is known to coincide with strong star formation events in the early Universe. To develop an accurate model of galaxy formation, the relationship between such systems and their hosting dark matter halos must be understood. Employing weak gravitational lensing galaxy mass analysis, we have discovered that the number of globular clusters in a given galaxy is directly proportional to its total dark matter halo mass. This result holds in both dwarf and giant ellipticals, spirals and in all types of galaxy environments. I will present these observations and initiate a discussion on the implications for scenarios of globular cluster system formation and evolution.
Abstract
Las clases se impartirán en el aula los días 4, 5 y 6 de noviembre de 2008 en horario de 10:30 a 12:30 Programa del curso: 1.- Introduction 2.- Electromagnetic Interaction (QED) 3.- Strong Interaction (QCD) 4.- Electroweak Interaction 5.- Precision Tests 6.- CP Violation and B Physics 7.- Neutrino Masses 8.- Beyond the Standard Model 9.- Physics at LHC
Abstract
Programa del curso: 1.- Introduction 2.- Electromagnetic Interaction (QED) 3.- Strong Interaction (QCD) 4.- Electroweak Interaction 5.- Precision Tests 6.- CP Violation and B Physics 7.- Neutrino Masses 8.- Beyond the Standard Model 9.- Physics at LHC
Abstract
Programa del curso: 1.- Introduction 2.- Electromagnetic Interaction (QED) 3.- Strong Interaction (QCD) 4.- Electroweak Interaction 5.- Precision Tests 6.- CP Violation and B Physics 7.- Neutrino Masses 8.- Beyond the Standard Model 9.- Physics at LHC
Upcoming talks
- Dark satellites as cosmological probes and gamma-ray dark matter targetsDr. Miguel Ángel Sánchez CondeThursday January 30, 2025 - 10:30 GMT (Aula)
- Caracterización de curvas de luz de supernovas superluminosas ricas en hidrógeno.Dr. Priscila PessiThursday February 6, 2025 - 10:30 GMT (Aula)