Recent Talks
List of all the talks in the archive, sorted by date.
Abstract
The effects that environment produce on galaxy disks and how they modify the subsequent formation of bars need to be distinguished to fully understand the relationship between bars and environment. To shed light on this issue, we derive the bar fraction in three different environments ranging from the field to Virgo and Coma Clusters, covering an unprecedentedly large range of galaxy luminosities (or, equivalently, stellar masses). We confirm that the fraction of barred galaxies strongly depends on galaxy luminosity. We also show that the difference between the bar fraction distributions as a function of galaxy luminosity (and mass) in the field and Coma Cluster is statistically significant, with Virgo being an intermediate case. We interpret this result as a variation of the effect of environment on bar formation depending on galaxy luminosity. We speculate that brighter disk galaxies are stable enough against interactions to keep their cold structure, thus, the interactions are able to trigger bar formation. For fainter galaxies, the interactions become strong enough to heat up the disks inhibiting bar formation and even destroying the disks. Finally, we point out that the controversy regarding whether the bar fraction depends on environment could be resolved by taking into account the different luminosity ranges probed by the galaxy samples studied so far.
Abstract
Morphologies of star-forming galaxies at z>1 are typically irregular containing a handful of dominant bright regions. Recent observational evidence suggest that many of these galaxies are governed by disc-like rotation. Using Halpha galaxy kinematics from OSIRIS+LGSAO we find that within z~1 turbulent discs star-forming regions have average sizes of 1.5 kpc and average Jeans masses of 4.2x10^9 \Msun, in total accounting for 20-30% of the stellar mass of the discs. These findings lend observational support to models that predict larger star-forming regions will form as a result of higher disc velocity dispersions driven-up by cosmological gas accretion. As a consequence of the changes in global environment, it may be predicted that star-forming regions at high redshift should not resemble star-forming regions locally. Yet despite the increased sizes and dispersions, high-z star-forming regions and HII regions are found to follow tight scaling relations over the range z=0-2 for Halpha size, velocity dispersion, luminosity and mass when comparing >2000 HII regions locally and 30 regions at z>1. While the turbulence of discs may have important implications for the size and luminosity of regions which form within them, the same processes likely govern their formation from high redshift to the current epoch. We are now able to test this conclusion with first results from a new sample of z=0.1-0.2 highly star-forming turbulent galaxies from the Sloan Digital Sky Survey.
Abstract
Observational studies show that voids are prominent features of the large scale structure of the present day Universe. Even though their emerging from the primordial density perturbations and evolutionary patterns differ from dark matter halos, N-body simulations and theoretical models have shown that voids also merge together to form large void structures. In this study, progressing from previous works, we formulate a toy model to construct a merger tree algorithm of isolated spherical voids by adopting the halo merging algorithm given by Lacey and Cole (1993) in the Einstein de Sitter (EdS) universe. To do this, we take into account the general mass distribution of voids which consists of two main void sociologies: merging and collapsing. We show that the mass distribution function can be reduced to a simple form by neglecting the collapse void contribution. As a result of this, the void mass fraction has a contribution only from isolated gradually merging voids. This algorithm becomes the analogue of the halo merging algorithm. Based on this isolated spherical void distribution, we obtain the void merging algorithm, void merging rate and void survival times in terms of the self similar and standard cold dark matter models in the EdS universe.
Abstract
The Southeastern Association for Research in Astronomy (SARA) is a consortium of 11 US universities that currently remotely operates a 0.9 m telescope at Kitt Peak National Observatory and a 0.6 m telescope at Cerro Tololo Inter-American Observatory. Collectively, the SARA institutes predominantly use differential photometry techniques for studies ranging in scale from solar system asteroids and minor planets, to transiting exo-planets, most types of variable stars and binaries, to active galactic nuclei and blazers. In addition, the SARA telescopes are frequently used in preliminary observations for other major observatories (HST, for example). In this talk a brief history and the philosophy of SARA will be given, as well as more details on the current types of scientific programs run by the SARA institutes. The new scientific opportunities enabled by the JKT will also be highlighted. Finally, our development and funding plans will be presented. A description of the telescope automat ion process by Astronomical Consultants & Equipment, Inc. will conclude.
Abstract
This talk will give an overview of our understanding of the Sun in the 1960's, the major discoveries since then, and the main questions that need to be answered in future. It will focus on the role of the magnetic field in the solar interior, the photosphere, prominences, coronal heating and eruptive flares.
Abstract
In the 50 years since their discovery, it has become increasingly recognised that quasars are not merely signposts to the distant Universe, but also play a key role in the overall galaxy evolution process. However, if we are to incorporate quasars into models of galaxy evolution, it's important to understand how, when and where they are triggered. In this talk I will review the latest observational results on the triggering of quasars, based on the morphologies of their host galaxies and star formation properties; I will also discuss the future prospects for understanding quasar triggering using Herschel and ALMA data.
Abstract
Ultracool dwarfs represent the low-mass tail of the distribution of primary masses for which planets can be found with the Kepler satellite. Our team has identified 42 new ultracool dwarfs in the Kepler field of view that have started to be observed with this space telescope via its General Observer and Director Discretionary Time programs. First results of a study of Kepler light curves of 18 very low-mass dwarfs will be presented at this talk. It is demostrated that Kepler is sensitive to moon sized companions of ultracool dwarfs at short orbital periods (few days), and an intriguing candidate will be shown. Results from a ground-based infrared transit survey will also be presented which confirm the lack of Hot Jupiters around very low-mass primaries. Last but not least, a concept for a sustainable hybrid Hypertelescope that would be crucial to follow-up rocky planets will also be introduced.
Abstract
Hablaré de tres caprichos. El primero pretende responder a la pregunta: ¿Existen lentes magnéticas en el Cosmos? El segundo trata de un problema de Milagro, viendo cómo el campo magnético de nuestra galaxia puede resolver la anisotropía en la distribución de rayos cósmicos de unos 10 TeV. El tercero considera las curvas de rotación de algunas galaxias espirales que tras haber alcanzado la velocidad asintótica, vuelve a tener pendiente positiva.
Abstract
The formation of active regions and its most visible outcome-sunspots-are still a matter of research. Magnetic flux tubes theory tends to explain the formation of sunspots, but it still faces some unresolved questions: How are they generated? Why can they survive all along the convective zone? How do they rise? I will review this theory and introduce a new way to understand sunspot formation: the negative effective magnetic pressure instability (NEMPI). NEMPI was predicted long ago (Kleeorin et al., 1989, 1990; Kleeorin \& Rogackevskii, 1994; Kleeorin et al., 1996) but has only been seen recently (Branderburg et. al., 2011). It arised as a effect of strong stratication and the presence of turbulence with a weak mean magnetic field. Under suitable conditions, a large-scale instability resulting in the formation of non-uniform magnetic structures, can be excited over the scale of many turbulent eddies or convection cells. This instability is caused by a negative contribution of turbulence to the effective (mean-field) magnetic pressure and has previously been discussed in connection with the formation of active regions and perhaps sunspots. Now, we want to understand the effects of rotation on this instability in both two and three dimensions. We use mean-field magnetohydrodynamics in a parameter regime in which the properties of the negative effective magnetic pressure instability have previously been found to be in agreement with those of direct numerical simulations. We find that the instability is suppressed already for relatively slow rotation with Coriolis numbers (i.e. inverse Rossby numbers) around 0.2. The suppression is strongest at the equator. In the nonlinear regime, we find traveling wave solutions with propagation in the prograde direction at the equator with additional poleward migration away from the equator. The prograde rotation of the magnetic pattern near the equator is argued to be a possible explanation for the faster rotation speed of magnetic tracers found on the Sun. In the bulk of the domain, kinetic and current helicities are negative in the northern hemisphere and positive in the southern.
Abstract
Magnetic fields at galactic and larger scales is a challenging issue for astrophysics and cosmology. In this talk, I'll review the methods to detect magnetic fields at these scales as well as I'll revise the field structure of the Milky Way and its dynamical implications over the gas distribution. In the second part, I'll review the updated works about effects of primordial magnetic fields on large scale structure and I'll show you preliminary results on its imprint on cosmic microwave background.
Upcoming talks
- Revisiting mass transfer and accretion in symbiotic binaries in the Gaia eraDr. Jaroslav MercThursday November 28, 2024 - 10:30 GMT (Aula)
- Control de temperatura y encendido de los armarios de instrumentos de GTC con PCL BeckoffManuel Luis AznarFriday November 29, 2024 - 10:30 GMT (Aula)