Recent Talks

List of all the talks in the archive, sorted by date.


T92olnv1flc-thumbnail
Thursday February 19, 2015
Dr. Jovo Vranjes
IAC

Abstract

The lower solar atmosphere is very weakly ionized, and by conductivity it is comparable to the sea water. The collisional frequency for electrons and ions can be over 10^10 Hz and 10^9 Hz, respectively. This implies that particles may not be magnetized and are thus unaffected by the magnetic field. In this talk I shall present accurate collision cross sections and collision frequencies for electrons, protons and hydrogen atoms, and the corresponding transport coefficients for layers with both unmagnetized and magnetized particles. The cross sections include many essential effects like charge exchange, quantum-mechanical in-distinguishability at low energies, polarization of neutral atoms by external charges, and dependence on energy of colliding particles. The effects of collisions on Alfven waves will also be discussed.


MarABi0kVG0-thumbnail
Thursday February 12, 2015
Dr. David Jones
IAC

Abstract

I will report on the results of our paper published in Nature this week, outlining the discovery of a super-Chandrasekhar double-degenerate binary system at the heart of the planetary nebula Hen 2-428.  Planetary nebulae (PNe) represent the final stage in the evolution of low- and intermediate-mass stars, forming from the mass ejected by the star during its AGB evolution before being ionised by the star's, now exposed, core.  As binarity is expected to play a key role in the formation of aspherical PN morphologies, we have been intensively searching for new binary central stars in a push towards a statistical sample.  One of our newly-discovered binary systems, lying at the heart of Hen 2-428, had a further surprise to reveal, with observations and modelling showing the system to consist of twin evolved stars with a total mass greater than the Chandrasekhar limit.  The short period of the system, only 4.2 hours, means that the two stars will merge together in approximately 700 Myr, resulting in a Supernova Type Ia.  While the super-Chandrasekhar merger of two white dwarfs has long been considered a formation pathway for SN Ia, this is the first system found that is confirmed to be both massive enough and in a tight enough orbit to merge in less than a Hubble time.


KkIH0LeWpPI-thumbnail
Tuesday February 10, 2015
Dr. Hannu Parviainen
University of Oxford

Abstract

Detection and characterisation of weak periodic signals from noisy time series is a common problem in many different fields of astrophysics. Here I detail one approach for testing whether a signal with roughly known characteristics exists in the data, using a search of secondary eclipses from Kepler-observed photometric time series as an example. The method is based on Bayesian model selection and uses Gaussian processes to model the stochastic variability in the data in non-parametric fashion.


JIeJADkBi08-thumbnail
Thursday February 5, 2015
Dr. Nataliia Shchukina
Main Astronomical Observatory, National Academy of Sciences, Kyiv

Abstract

The solar abundance of chemical elements play an important role in addressing such important issues as the formation, structure, and evolution of the Sun and the solar system, the origin of the chemical elements, the evolution of stars and galaxies. Despite the large number of papers published on this issue, debates about the solar composition of the Sun continue. In this talk we start summarizing the current understanding of the solar abundances of iron and CNO elements, which play a crucial role on the determination of the solar metallicity. We then pay especial attention to the impact of the quiet Sun magnetism on the determination of the abundances of these elements. The solar photosphere is significantly magnetized, due to the ubiquitous presence of a small-scale magnetic field whose mean strength is thought to be of the order of 100 gauss. Here we address the problem of the determination of the abundances of chemical elements taking into account the significant magnetization of the quiet Sun photosphere. To this end, we use 3D models of the quiet solar photosphere resulting from a state-of-the-art magneto-convection simulation with small-scale dynamo action where the net magnetic flux is zero. We conclude that if the magnetism of the quiet solar photosphere is mainly produced by a small-scale dynamo,then its impact on the determination of the solar abundance of iron and CNO elements is negligible.


FnyEEu79ulU-thumbnail
Thursday January 29, 2015
Dr. France Allard
Centre de Recherche Astronomique de Lyon

Abstract

Understanding the atmospheric and evolutive properties of very low mass stars, brown dwarfs, and gas giant exoplanets have been important challenges for modelers around the world since the discovery of the first brown dwarfs in the Pleiades cluster (Rebolo et al. 1995) and in the field (Nakajima et al. 1995). The early studies of brown dwarfs have provided rich insights into atmospheric physics, with discoveries ranging from cloud formation (Tsuji et al. 1996), methane bands (Oppenheimer et al. 1995) and ammonia bands (Delorme et al. 2008), to the formation of wasi-molecular KI-H2 absorption (Allard et al. 2007), and to disequilibrium chemistry (Yelle & Griffith 2001). New classical 1D models yield spectral energy distribution (SED) that match relatively well despite these complexities. These models have for instance explained the spectral transition from M to L, T and now Y brown dwarf spectral types (Allard et al. 2013). However, in presence of surface inhomogeneities revealed recently for a nearby (2 pc) brown dwarf (Crossfield et al. 2014), the SED may well fit even exactly, but the model parameters could be far from exact, e.g. with the effective temperature by several hundred kelvins too cool in the case of dusty brown dwarfs and young gas giant exoplanets! I will review the progress achieved in reproducing the spectral properties of very low mass stars, brown dwarfs and gas giant exoplanets, and review progress in modeling more accurately their atmospheres using Radiation HydroDynamical (RHD) simulations.


UIqZ8dUPg3I-thumbnail
Tuesday January 27, 2015
Mr. Ben Hendricks
Univ of Heidelberg

Abstract

Dwarf spheroidal (dSph) galaxies are the smallest, closest and most abundant galaxies in the Universe and therefore excellent laboratories to study star formation (SF) history and chemical evolution on the smallest
scales. However, the complexity within---and variations between---these objects are poorly understood, not least because the vast majority of present-day data is restricted to the most central regions of these systems.
Thus, the scope of this talk is to present the results from our chemodynamical analysis (i.e., combining chemical abundances, stellar
ages, and precise dynamical measurements from high-resolution spectra) of the outer regions of Fornax and to put them in a general context of the chemical evolution in dSphs and their key-regulating factors. On this basis, possible (and impossible) evolutionary scenarios for Fornax are discussed and compared with model predictions.  Furthermore, Fornax is one amongst very few dSphs with an own globular cluster population. In the last part of my talk I use the results from our analysis and discuss
ongoing projects designed to address the impact of globular clusters on the evolution of this galaxy, and vice versa.


I6cqRPWkOe0-thumbnail
Monday January 26, 2015
Dr. Octavio Llinás
Plataforma Oceanica de Canarias (PLOCAN)

Abstract


I0SUgVxPa94-thumbnail
Thursday January 22, 2015
Prof. Guillermo Tenorio-Tagle
INAOE

Abstract

From the structure of PHL 293B and the physical properties of its ionizing cluster and based on results of hydrodynamic models, we point at the various events required to explain in detail the emission and absorption components seen in its optical spectrum. We ascribe the narrow and well centered emission lines, showing the low metallicity of the galaxy, to an HII region that spans through the main body of the galaxy. The broad emission line components are due to two off-centered supernova remnants evolving within the ionizing cluster volume and the absorption line profiles are due to a stationary cluster wind able to recombine at a close distance from the cluster surface as originally suggested by Silich et al. 2004. Our numerical models and analytical estimates confirm the ionized and neutral column density values and the inferred X-ray emission derived from the observations.


OjSZgqOLKAw-thumbnail
Thursday January 15, 2015
Dr. Rosa Calvi
IAC

Abstract

One of the important questions in extragalactic astronomy concerns the debate between nature and nurture scenarios. Are the observed galaxy local properties the end product of the different conditions at birth or the product of the interactions, or other local processes, since a galaxy is not an isolated object? In this talk I will present the results of the analysis of some galaxy properties, morphologies and mass functions, obtained comparing, for the first time in a consistent manner, galaxies in the widest range of environments at low redshift (groups, clusters, binary systems, isolated galaxies). The aim was to understand the most important factors that drive galaxy evolution, trying to disentangle the importance of galaxy mass and global environment.

In addition I will present the first results concerning the two projects in which I am involved at IAC: the ALBA project, aimed to explore the signs of a proto-cluster at z~6.5, and the analysis of dust emission of a sample of local tadpole galaxies. 


ASf-HfO0R4M-thumbnail
Thursday December 18, 2014
Dr. Gustavo Bruzual
Universidad Nacional Autónoma de México (UNAM)

Abstract

Stellar population synthesis has reached a high degree of sophistication that has been exploited to understand to a certain extent the mechanisms of formation, assembling, and evolution of galaxies in our universe. Progress is based on solid results in the field of stellar evolution and spectrophotometric observations of large numbers of stars and galaxies. However, there are certain phases of stellar evolution, like the thermally pulsing asymptotic giant branch (TP-AGB) phase, the Wolf-Rayet stage, and the presence of interacting binaries, whose treatment is either ignored or extremely simplified in galaxy evolution models due to the uncertainties in their description. In this talk I will present results from models that add the state of the art in the treatment of these evolutionary phases to traditional population synthesis models. 



Upcoming talks


More upcoming talks

Recent Colloquia


Recent Talks