Recent Talks
List of all the talks in the archive, sorted by date.
Abstract
An original method for measuring the atmospheric turbulence is described, capable of even measuring the tip-tilt, which normally requires a dedicated natural star and nowadays defines the practical limit of the adaptive optics technique. The method is based in the illumination of a wide area of the Sodium Layer, and to use their inhomogeneities as a reference. Sevaral analysis and simulation results will be presented.
Zoom link:
https://rediris.zoom.us/j/87053930312
Enlace youtube: https://youtu.be/c1TCdt_-S_o
Abstract
Reconstructing the past of the Milky Way depends on the study of its metal-poor stars, which either have been formed in the Galaxy itself in the first billion years, or have been accreted through mergers of satellite galaxies over time. These stars are usually found in what is known as the Milky Way halo, a light — in terms of total mass — stellar component which is usually made of stars whose kinematics significantly deviates from that of the Galactic disc.
In this talk, I will discuss how it has been possible to use the astrometric and spectroscopic data delivered by Gaia and complementary surveys to shed light on the past of our Galaxy, through the study of its halo. Besides the discovery of the possible last significant merger experienced by the Milky Way, the use of 6D phase space information and chemical abundances allowed to reconstruct the impact this merger had on the early Milky Way disc, and the time it occurred, as well as to discover that some of the most metal-poor stars in the Galaxy possibly formed in a disc. This last finding would imply that the dissipative collapse that led to the formation of the old Galactic disc must have been extremely fast.
Abstract
The emission line spectrum of H II regions provides information about the chemical composition of the present-day interstellar medium. The study as a function of their galactocentric distances helps to constrain chemical evolution models. In this talk, I present a reanalysis of the abundance gradients of C, N, O, Ne, S, Cl, and Ar for a sample of 33 Galactic H II regions covering a range in Galactocentric Distances from 6-17 kpc. New values of the Galactocentric distances were calculated using Gaia DR2 parallaxes for some objects. We study in detail the different ICF schemes to improve the results of the total abundances in Galactic H II regions. We found that the re-evaluation of the distances using Gaia DR2 parallaxes produces an O gradient that discards a flattening of the gradient in the inner part of the Galaxy. The radial distribution of Ne/O, S/O, Cl/O and Ar/O are almost flat confirming a lockstep evolution of those elements respect to O. Our Galaxy also shows an almost flat N/O gradient respect to other nearby spiral galaxies. We compare our results with those from B type stars and cepheids, young planetary nebulae and those slopes using optical and infrared data for H II regions.
Abstract
MAAT is a visitor mirror-slicer optical module that will allow the OSIRIS spectrograph on the 10.4-m Gran telescopio CANARIAS (GTC) the capability to perform Integral-Field Spectroscopy (IFS) over a seeing-limited FoV 14.20" × 10" with a slice width of 0.303". MAAT@GTC will enhance the resolution power of OSIRIS by 1.6 times as compared to its 0.6 wide long-slit. All the eleven OSIRIS grisms and volume-phase holographic gratings will be available to provide broad spectral coverage with moderate resolution (R=600 up to 4100) in the 3600 − 10000 AA wavelength range. MAAT unique observing capabilities will broaden its use to the needs of the community to unveil the nature of most striking phenomena in the universe well beyond time-domain astronomy. The GTC equipped with OSIRIS+MAAT will also play a fundamental role in synergy with other
facilities, some of them operating on the northern ORM at La Palma.
I will present different aspects of MAAT@GTC - including scientific and technical specifications, outstanding science cases, and an outline of the instrument concept.
Abstract
The formation and evolution of planets in general is closely linked to the life of their host star. What happens to the planetary systems at the end stages of the life cycle of their star has been one of the questions that have received attention from a theoretical point of view but has had a lack of real life examples to study. Among more than 4000 known exoplanets to date only a few of these objects have been found orbiting around pulsars, but so far we have found nothing that resembles what our own solar system will be like long after the Sun leaves the main sequence.
In this talk we will discuss the recent announcement by A. Vanderburg et al. of a giant planet candidate detected by the transit method orbiting around a white dwarf. The candidate was discovered using data from the space-based NASA mission TESS and confirmed using GTC, Spitzer, and other ground-based facilities. We will talk about the role that GTC played in this discovery, the peculiarity of this candidate system, and the possibility of detecting atmospheres in rocky planets orbiting around white dwarfs.
Zoom link: https://rediris.zoom.us/j/95796802777
Youtube link: https://youtu.be/TX5KfTeJNAM
Abstract
In the previous SMACKs, basic operations on the command-line were reviewed in interactive mode: where you enter one command, wait for it to finish and enter the next command. The shell's interactive mode is good for small/fast tests, but is not scalable. For example when you know the commands and parameters work and want to apply them to hundreds/thousands of targets. Shell scripts are simply plain-text files that store all the various commands that you want to be executed in sequence. They are designed precisely for the easier management of operations that are more complex than a simple command. In fact many of the commands in the Unix-like operating systems are actually shell scripts! Here will review some basic intricacies with designing robust shell scripts and avoiding common pitfalls. Also, since shell scripts are simple plain-text files, we will also do a short review of simple plain-text editors like GNU Nano and more advanced editors like Vim and GNU Emacs. Advanced editors have many useful features to simplify programming in many languages (including shell programming) and don't need complex graphic environments and can be run in the raw command-line (a major advantage when scaling your project up to supercomputers that don't have a graphic environment). For newcomers to data-intensive astronomical research, we encourage you to select an advanced editor, and master it early to greatly simply your research (in any language).
Abstract
Wide hot subdwarf B (sdB) binaries with main-sequence companions are outcomes of stable mass transfer from evolved red giants. The orbits of these binaries show a strong correlation between their orbital periods and mass ratios. The origins of this correlation have, so far, been lacking a conclusive explanation.
We have performed a small but statistically significant binary population synthesis study with the binary stellar evolution code MESA. We have used a standard model for binary mass loss and a standard Galactic metallicity history. We have achieved an excellent match to the observed period - mass ratio correlation without explicitly fine-tuning any parameters. Furthermore, our models produce a good match to the observed period - metallicity correlation.
We demonstrate, for the first time, how the metallicity history of the Milky Way is imprinted in the properties of the observed post-mass transfer binaries. We show that Galactic chemical evolution is an important factor in binary population studies of interacting systems containing at least one evolved low-mass (Mi < 1.6 Msol) component. Finally, we provide an observationally supported model of mass transfer from low-mass red giants onto main-sequence stars.
Zoom link: https://rediris.zoom.us/j/98017007654
Abstract
Atmospheric compositions can provide powerful diagnostics of formation and migration histories of planetary systems. In this talk, I will present the results of our latest survey of atmospheric compositions focused on atmospheric abundances of H2O, Na, and K. We employ a sample of 19 exoplanets spanning from cool mini-Neptunes to hot Jupiters, with equilibrium temperatures between ~300 and 2700 K. We employ the latest transmission spectra, new H2 broadened opacities of Na and K, and homogeneous Bayesian retrievals. We confirm detections of H2O in 14 planets and detections of Na and K in 6 planets each. Among our sample, we find a mass-metallicity trend of increasing H2O abundances with decreasing mass, spanning generally substellar values for gas giants and stellar/superstellar for Neptunes and mini-Neptunes. However, the overall trend in H2O abundances, is significantly lower than the mass-metallicity relation for carbon in the solar system giant planets and similar predictions for exoplanets. On the other hand, the Na and K abundances for the gas giants are stellar or superstellar, consistent with each other, and generally consistent with the solar system metallicity trend. The H2O abundances in hot gas giants are likely due to low oxygen abundances relative to other elements rather than low overall metallicities, and provide new constraints on their formation mechanisms. Our results show that the differing trends in the abundances of species argue against the use of chemical equilibrium models with metallicity as one free parameter in atmospheric retrievals, as different elements can be differently enhanced.
Zoom link: https://rediris.zoom.us/j/92734027825
Abstract
It has been claimed for decades that almost all galaxies in the local Universe host at their centre a supermassive black hole (SMBH) the mass of which appears to be tightly correlated with the stellar mass and the random motion ("velocity dispersion", sigma) of the stars in the host galaxy. In this talk I will first review the state of the art in this field. I will then highlight that significant biases affect local black hole-galaxy correlations. I will specifically show that the majority of quiescent early-type galaxies with central black hole dynamical mass estimates have significantly higher velocity dispersions than local typical galaxies of similar stellar mass. Through aimed Monte Carlo simulations, residual analysis, and the comparison with latest AGN clustering measurements, I will then illustrate that present data sets of active and quiescent galaxies strongly favour on average lower SMBH masses than previously thought, and point to velocity dispersion as more ``fundamental'' than galaxy stellar mass, galaxy size or Sérsic index. I will then move on discussing the main implications of these findings, in particular: 1) The implied black hole radiative efficiencies and obscured fractions; 2) the consequences on feedback from active black holes and SMBH binary gravitational waves; 3) the connection to cosmological models that rely on velocity dispersion, rather than stellar mass, as main driver of black hole growth.
Zoom link: https://rediris.zoom.us/j/97154760685
Abstract
Axion detection would be one of the most exciting moments in the entire history of science. This hypothetical particle can simultaneously explain two fundamental problems in Modern Physics: the mystery of dark matter and the CP problem of the strong interaction. In this talk, I will provide an overview of the status for the search for axions and I will explain how the DALI experiment can go beyond these frontiers.
https://rediris.zoom.us/j/98051612614
Upcoming talks
- Properties and origin of thick disks in external galaxiesDr. Francesca PinnaThursday January 16, 2025 - 10:30 GMT (Aula)
- Seminar by Luigi TibaldoLuigi TibaldoTuesday January 21, 2025 - 12:30 GMT (Aula)