Found 7 talks width keyword gravitation

Thursday December 2, 2021
Prof. Roberto Maiolino
Kavli Cambridge


In the local universe most of the stellar mass is in passive galaxies, where star formation is
absent or at very low levels. Understanding what are the mechanisms that have been
responsible for quenching star formation in galaxies, and transforming them into passive,
quiescent systems, is one of the main observational and theoretical challenges of extragalactic
astrophysics. I will give a brief overview of the several possible quenching causes and physical
processes that have been proposed so far, ranging from feedback from black hole accretion and
starburst activity, to effects associated with the large scale environment in which galaxies live.
Although most of these mechanisms and causes play a role in different classes of galaxies and
at different epochs, multi-band observations are providing growing evidences that just a few of
them play the key, dominant role.
I will conclude by providing prospects for further investigating these aspects and tackling open
questions with the next generation of observing facilities.

Thursday November 4, 2021
Dr. Sergio Contreras



On the LCDM cosmology, dark matter collapses into virialised objects called haloes. The abundance and distribution of these haloes are a direct consequence of the cosmology of the Universe. By constraining the dark matter halo clustering, we could also constraint the cosmology from our Universe. Since dark matter haloes can not be observed, we need to use galaxies to trace them.

In this talk, I will present a new method that we develop capable of constraining cosmological information from the redshift space galaxy clustering.  We use the scaling of cosmological simulations and the SubHalo Abundance Matching extended (SHAMe) empirical model to produce realistic galaxy clustering measurements over a wide range of cosmologies. We generate more than 500,000 clustering measurements at different cosmological and SHAMe parameters to build an emulator capable of reproducing the projected correlation function, monopole and quadrupole of the galaxies. We run an MCMC using this emulator to constrain the cosmology of the TNG300 hydrodynamic simulation. We correctly predicted the cosmology of the TNG300 simulation constraining sigma8 between [0.75,0.83] and Omega matter h^2 between [0.127,0.162]. The best constraints are obtained when including scales below 2 Mpc/h and when combining all different clustering statistics. We conclude that our approach can be used to constrain cosmological and galaxy formation parameters from the galaxy clustering of galaxy surveys.

Thursday May 13, 2021
Prof. Diego Blas
Imperial College


Bosonic ultra-light dark matter (ULDM) in the mass range m ~ $10^{-22} - 10^{-21} \rm eV$ has been invoked as a motivated candidate with new input for the small-scale `puzzles' of cold dark matter. Numerical simulations show that these models form cored density distributions at the center of galaxies ('solitons'). These works also found an empirical scaling relation between the mass of the large-scale host halo and the mass of the central soliton. We show that this relation predicts that the peak circular velocity of the outskirts of the galaxy should approximately repeat itself in the central region. Contrasting this prediction to the measured rotation curves of well-resolved near-by galaxies, we show that ULDM in the mass range m ~ $10^{-22} - 10^{-21} \rm eV$ is in tension with the data.

Monday November 17, 2014
Prof. Martín Rivas
Theoretical Physics Department - University of the Basque Country


Things should be made simple, but not simpler.

What we want to show is that General Relativity, as it stands today, can be considered as a gravitational theory of low velocity spinless matter, and therefore a restricted theory of gravitation.

Gravity is understood as a geometrization of spacetime. But spacetime is also the manifold of the boundary values of the spinless point particle in a variational approach. Since all known elementary matter, baryons, leptons and gauge bosons are spinning objects, it means that the manifold, which we call the kinematical space, where we play the game of the variational formalism of a classical elementary particle must be greater than spacetime.

Mathematics shows that this manifold for any arbitrary mechanical system is always a Finsler metric space, such that the variational formalism can be interpreted as a geodesic problem on this metric space.

This manifold is just the flat Minkowski space for the free spinless particle.  Any interaction modifies its flat Finsler metric as gravitation does.

The same thing happens for the spinning objects, but now the Finsler metric space has more dimensions and its metric is modified by any interaction, so that to reduce gravity to the modification only of the metric of the spacetime submanifold is to make a simpler theory, the gravitational theory of spinless matter.

Even the usual assumption that the modification of the metric only produces a Riemannian metric of the spacetime is also a restriction because in general the coefficients for a Finsler metric, are also dependent on the velocities. Removal of the velocity dependence of metric coefficients is equivalent to consider the restriction to low velocity matter.

In the spirit of unification of all forces, gravity cannot produce, in principle, a different and simpler geometrization than any other interaction.

References: arXiv: 1203.4076

Monday October 4, 2010
Prof. João Magueijo
Imperial College London, UK


Contrary to popular belief, on very large distance scales visible matter stubbornly refuses to "fall" according to the laws of gravity of both Newton and Einstein. The paradox has led to the introduction of dark matter, purporting to explain the observed surplus of gravitational pull. The logical possibility remains that there is no dark matter, what you see is all there is, and that the paradox simply signals the break down of the Einstein-Newton theory of gravity. I will review alternative theories of gravity that do away with the need for dark matter. Surprisingly Solar system gravitational experiments, such as those associated with the LISA Pathfinder mission, might settle the score between the two approaches.

Tuesday March 23, 2010
Prof. Michael Heller
Vatican Observatory, Italy


A Friedman-like cosmological model, based on noncommutative geometry, is presented. Its Planck level is totally nonlocal with no space and no time. The dynamics on this level is strongly probabilistic which makes the initial singularity statistically insignificant. Space, time and the standard dynamics emerge when one goes from the non-commutative regime (on the Planck level) to the usual "commutative physics".

Thursday February 19, 2009
Prof. Carlos Frenk
Institute for Computational Cosmology, Physics Dept, Durham University


The standard model of cosmology -- the ``Lambda cold dark matter'' model -- is based on the idea that the dark matter is a collisionless elementary particle, probably a supersymmetric particle. This model (which mostly dates back to an early workshop in Santa Barbara in the 1980s) has been famously verified by observations of the cosmic microwave background radiation and the large-scale distribution of galaxies. However, the model has yet to be tested conclusively on the small scales appropriate to most astronomical objects, such as galaxies and clusters. I will review our current understanding of the distribution of dark matter on small scales which derives largely from large cosmological N-body simulations and I will discuss prospects for detecting dark matter, either through its gravitational effect on galaxies and clusters or, more directly, through gamma-ray annihilation radiation.

« Newer Older »

Upcoming talks

More upcoming talks

Recent Colloquia

Recent Talks