Found 3 talks width keyword Herschel

Tuesday February 19, 2019
Dr. Hans Zinnecker
Deutsches SOFIA Institut, Univ. of Stuttgart, Germany (retired)



SOFIA, short for Stratospheric Observatory for Infrared Astronomy,
is a 2.7m telescope flying on a Boeing 747SP at altitudes of 12-14km,
to detect and study mid- and far-infrared radiation that is blocked
by water vapor in the earth's atmosphere and cannot reach the
ground. It is the successor to the Kuiper Airborne Observatory (1974-1995)
and currently the only access to and platform for astronomical observations
in the far-infrared (30-300 microns), except for balloon-borne telescopes.
SOFIA normally flies out of California, but once a year also
deploys to the Southern Hemisphere (usually to Christchurch,
New Zealand), benefitting from the excellent wintertime
stratospheric conditions to study the rich southern skies.
Although a bilateral project (80:20)
between USA (NASA/USRA) and Germany (DLR/DSI), it is open for
proposals from the world-wide astronomical community at large.
It addresses many science questions that ESA's successful but
now extinct Herschel Observatory has left unanswered and
offers observational opportunities similar to and beyond Herschel.
SOFIA also has many synergies with ALMA and APEX, as well as IRAM
and other submm and radio telescopes.

In part I of this SOFIA lecture, I will introduce the observatory 
in general, the plane, the telescope, the mode of operation, and 
in particular the current and future instrumentation.

In part II (later this week),  I will present a glimpse of SOFIA science
highlights and discoveries in its first 6 years of operation
(since 2012), including the most recent astrophysical and astrochemical 
results. I will also address its future ISM and star formation potential.  

SOFIA is a unique observatory, different from ground-based and
space platforms, which will serve the mid- and far-infrared 
astronomical community for many years to come.
It is a fascinating experience to fly on SOFIA! 

Thursday February 26, 2015
Dr. Julie Wardlow
Dark Cosmology Centre (Copenhagen)



Over the past ~20 years the high-redshift Universe has been increasingly opened to scrutiny at far-infrared wavelengths, where cool dust emission from star-formation dominates. The dusty star-forming galaxies (DSFGs) and submillimeter galaxies (SMGs), selected at these wavelengths likely represent an important, but short-lived phase in the growth of massive galaxies. These DSFGs often have star-formation rates in excess of ~1000 solar masses per year and are confirmed out to at least z~6, although their redshifts and high dust contents make them faint and difficult to study at other wavelengths. Now, using data from the Herschel Space Observatory we have identified a population of DSFGs that are strongly gravitationally lensed and therefore magnified and available for unprecedented multi-wavelength scrutiny. I will describe how this important gravitationally lensed population is identified, and present and interpret the data from our extensive multi-wavelength, multi-facility follow-up studies. I will also present follow-up observations of an intriguing sample of the highest redshift DSFGs (z>4) that are also selected via Herschel data, and that are proving troublesome to explain in galaxy formation simulations.


Thursday May 27, 2010
Dr. Jairo Méndez Abreu, Dr. Ismael Pérez Fournon
Instituto de Astrofísica de Canarias, Spain


(1) In this talk I will present a recent study of the bar fraction in the Coma Cluster galaxies based on a sample of 190 galaxies selected from the Sloan Digital Sky Survey Data Release 6 and observed with the Hubble Space Telescope (HST) Advanced Camera for Survey (ACS). The unprecedented resolution of the HST-ACS images allows us to explore the presence of bars, detected by visual classification, throughout a luminosity range of 9 mag (-23 < Mr < -14), permitting us to study the poor known region of dwarf galaxies. We find that bars are hosted by galaxies in a tight range of both luminosities (-22 < Mr < -17) and masses (109 < M/M? < 1011). This result holds when compared with a sample of bright/massive field galaxies. In addition, we find that the bar fraction does not vary significantly when going from the center to the cluster outskirts, implying that cluster environment plays a second-order role in bar formation/evolution. The shape of the bar fraction distribution with respect to both luminosity and mass is well matched by the luminosity distribution of disk galaxies in Coma, indicating that bars are good tracers of cold stellar disks. We discuss the implications of our results for the formation and evolution scenarios of bars and disks.

(2) The Herschel Space Observatory was launched on 14 May 2009. After a short commissioning and performance verification period, the science demonstration observations started in September 2009. Herschel is carrying out now routine science observations. The three instruments (SPIRE, PACS and HIFI) are working extremely well. The first results of the many Herschel Key Projects were presented at the ESLAB 2010 conference in ESTEC on May 4-7 2010 and will be published in a special issue of Astronomy and Astrophysics. In this talk I will introduce the observing capabilities of Herschel and will review some of the first results in extragalactic astronomy and in particular those of the Herschel Multi-tiered Extragalactic Survey (HerMES).

« Newer Older »

Upcoming talks

More upcoming talks

Featured talks