Found 30 talks width keyword dark matter

Video
Wednesday December 3, 2014
Dr. Tobias Goerdt
Wien Univ.

Abstract

Cold gas streaming along the dark-matter filaments of the cosmic web is predicted to be the major provider of resources for disc buildup and star formation in massive galaxies in the early universe. We use hydrodynamical simulations to study to what extent these cold streams are traceable in the extended circum-galactic environment of galaxies via Ly alpha emission, Ly alpha absorption and selected low ionisation metal absorption lines. We predict the strength of the absorption signal produced by the streams and find that it is consistent with observations in high redshift galaxies. The characteristics of the Ly alpha emission of our simulated galaxies are similar in luminosity, morphology and extent to the observed Ly alpha blobs, with distinct kinematic features. We analyse the characteristics of the cold streams in simulations and present scaling relations for the amount of infall, its velocity, distribution and its clumpiness and compare our findings with observations.


Video
Tuesday February 4, 2014
Dr. Sebastien Comeron
University of Oulu, Finland

Abstract

Two main families of models explain that, at least in appearance, something like 90% of the mass of the Universe is still undetected. One (supported by an overwhelmingly large fraction of the community) is the dark matter model, in which the missing mass is postulated to be made of exotic non-baryonic particles. The other one, is modifying gravity (MOND, MOG, ...) in such a way that it compensates the apparent lack of mass. Both approaches are purely ad-hoc and so far not based in first principles of fundamental physics. Since I am not a specialist, in dark matter or modified gravities, the talk I am proposing is intended to be made purely from a philosophical/sociological/historical point of view. I expect the talk to be an open debate. The philosophical thesis I will defend is that the order in the discovery of some astronomical landmarks has led the community to favour dark matter model. In my opinion, this has caused darkmatter to receive a larger funding and become more successful at describing reality than alternative models. I will try to expose to the audience that, from a purely philosophical point of view, the dark matter model and the modified gravity models are equally speculative and equally (in)valid. I will make the point that dark matter has to be taken only as an extremely complex model which is useful for the description of reality and not as reality itself.


Video
Tuesday September 17, 2013
Prof. Justin Read
University of Surrey, UK

Abstract

Dark matter makes up most of the mass of the Universe but remains mysterious. I discuss recent progress in constraining its properties by measuring its distribution in the Universe from tiny dwarf galaxies to giant galaxy clusters, and comparing this with numerical simulations. The latest results favour a cold, collisionless particle that must lie beyond the standard model of particle physics. I discuss the known small scale problems with this model: the cusp-core and missing satellites problems, and I argue that these are likely due to baryonic "feedback" during galaxy formation. I conclude with a discussion of experiments underway to detect dark matter particles, and the role that astrophysics has to play in these too. There is an exciting a very real prospect of detecting a dark matter particle in the next five years.


Video
Tuesday January 22, 2013
Mrs. Esra Russell
University of Groningen

Abstract

Observational studies show that voids are prominent features of the large scale structure of the present day Universe. Even though their emerging from the primordial density perturbations and evolutionary patterns differ from dark matter halos, N-body simulations and theoretical models have shown that voids also merge together to form large void structures. In this study, progressing from previous works, we formulate a toy model to construct a merger tree algorithm of isolated spherical voids by adopting the halo merging algorithm given by Lacey and Cole (1993) in the Einstein de Sitter (EdS) universe. To do this, we take into account the general mass distribution of voids which consists of two main void sociologies: merging and collapsing. We show that the mass distribution function can be reduced to a simple form by neglecting the collapse void contribution. As a result of this, the void mass fraction has a contribution only from isolated gradually merging voids. This algorithm becomes the analogue of the halo merging algorithm. Based on this isolated spherical void distribution, we obtain the void merging algorithm, void merging rate and void survival times in terms of the self similar and standard cold dark matter models in the EdS universe.


Video
Tuesday October 30, 2012
Dr. Alexander Unzicker
Pestalozzi-Gymnasium, Munich, Germany

Abstract

The concordance model of cosmology with its constituents dark matter and dark Energy is an established description of some anomalous observations. However, a series of additional contradictions indicate that the current view is far from satisfactory. Rather than describing observations with new numbers, it is argued that science should reflect its method, considering the fact that real progress was usually achieved by simplification. History, not only with the example of the epicycles, has shown many times that creating new ad-hoc concepts dominated over putting in doubt what had been established earlier. Also critical astrophysicists often believe that lab-tested particle physics has reliable evidence for its model. It is argued instead that the very same sociological and psychological mechanisms have been at work and brought particle physics in a still more deperate situation long ago. As an example, a couple of absurdities of the recent Higgs boson announcements are outlined. It seems inevitable that physics needs a new culture of data evaluation, raw data and source code must become equally transparent and openly accessible.


Video
Thursday July 5, 2012
Dr. Ignacio Ferreras
University College of London

Abstract

Massive early-type galaxies constitute an ideal test bed to probe our understanding of galaxy formation and evolution. Their high mass, spheroidal morphology and overly old stellar populations, along with their presence over a wide range of redshifts put to the test our current paradigm of formation via hierarchical growth. In this talk I will review recent work focused on the dark and bright sides of this problem. The former is tackled via gravitational lensing, comparing the dark matter and luminous components out to several effective radii, probing the efficiency of baryon collapse and ejection, and its feedback on the dark matter distribution (adiabatic compression). The bright side of early-type galaxies is approached via photo-spectroscopic analyses of the stellar populations, revealing a complex formation and assembly history with two well-defined phases of growth, and an intriguing connection with the "microphysics" of star formation.


Video
Thursday February 16, 2012
Dr. Daniel Eisenstein
SLOAN Digital Sky Survey, CfA Harvard, USA

Abstract

I will discuss how the acoustic oscillations that propagate in the photon-baryon fluid during the first million years of the Universe provide a robust method for measuring the cosmological distance scale. The distance that the sound can travel can be computed to high precision and creates a signature in the late-time clustering of matter that serves as a standard ruler. Galaxy clustering results from the Sloan Digital Sky Survey reveal this feature, giving a geometric distance to a redshift of 0.3 and an accurate measurement of Omega_matter. I will review our recent work on the theory and practice of the acoustic oscillation method and our latest cosmology results from SDSS-II. I will then present SDSS-III, which will use the acoustic method to produce 1% distance measurements in order to map the curvature and expansion history of the Universe and measure the evolution of dark energy.


Video
Thursday December 1, 2011
Dr. Carlos Hernandez-Monteagudo

Abstract

I revisit the claim of Dark Energy detection after stacking CMB data on the angular position of voids and superclusters in Sloan Data. I examine the theoretically expected amplitude for the ISW-induced signal and explore its scale dependence. I next confront these predictions with results obtained from real WMAP data, and evaluate the degree of agreement and the possible presence of contaminants. In a more general context, I address the possibility of unveiling the signature of Dark Energy on the CMB by looking at isolated regions on the sky hosting high-threshold projected under/over-densities: this constitutes a novel approach since it is less sensitive to large angle systematics commonly present in large scale structure surveys.


Video
Thursday July 21, 2011
Dr. Martín Lopez Corredoira
Instituto de Astrofísica de Canarias, Spain

Abstract

I will review some theoretical ideas in Cosmology different to the standard "Big Bang": the Quasi-steady State model, Plasma Cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Some open problems of Cosmology within the standard model will also be summarized.


Video
Wednesday July 20, 2011
Dr. Miguel Ángel Sánchez Conde
Instituto de Astrofísica de Canarias, Spain

Abstract

What's the dark matter made of? Do we have any idea of the kind of particle that should constitute ~85% of the matter content of the Universe? In this talk, I will briefly explain the properties that such a particle might have and will present some of the proposed candidates that arise from beyond the Standard Model of particle physics. Next stop will be to give an overview of the present status of dark matter searches, mainly focusing on gamma-rays. There is a tremendous effort currently ongoing that involves an impressive battery of experiments both at the lab and observatories around the world.
In a second part,  the importance of N-body cosmological simulations for the understanding of how dark matter halos form and evolve from the early Universe will be discussed. At this point, some problems arise that it's worth mentioning and that will hopefully lead to debate.

« Newer 1 | 2 | 3 Last >>

Upcoming talks

Featured talks