Found 34 talks archived in The Sun

Wednesday November 11, 2009
Dr. Jörg Büchner
Max-Planck Institut für Sonnensystemforschung, Germany


The dynamics of the solar atmosphere is largely controlled by its magnetic coupling to the photosphere of the Sun. Since the solar magnetic field is complex, numerical simulation must be utilized to investigate the coupling processes. Results will be shown of treating this way the two unresolved issues - the heating of the corona and the acceleration of the solar wind.

Tuesday October 20, 2009
Prof. Matthias Rempel
Matthias Rempel, National Center for Atmospheric Research, USA


For a long time radiative MHD simulations of entire sunspots from first principles were out of reach due to insufficient computing resources. Over the past 4 years simulations have evolved from 6x6x2 Mm size domains focusing on the details of umbral dots to simulations covering a pair of opposite polarity sunspots in a 100x50x6 Mm domain. In this talk I will discuss the numerical challenges encountered in comprehensive radiative MHD simulations of active regions and summarize the recent progress. Numerical simulations point toward a common magnetoconvective origin of umbral dots and filaments in the inner and outer penumbra. Most recent simulations also capture the processes involved in the formation of an extended outer penumbra with strong horizontal outflows averaging around 5 km/s in the photosphere. I will discuss in detail the magneto convective origin of penumbral fine structure as well as the Evershed flow. I will conclude with a brief summary of recent helioseismic studies based on realistic MHD simulations as well as inferences on the sub surface structure of sunspots.

Friday January 30, 2009
Dr. Saku Tsuneta
National Astronomical Observatory, Japan


The magnetic landscape of the polar region (Tsuneta et al, 2008) is characterized by vertical kilogauss patches with super-equipartition field strength, a coherence in polarity, lifetimes of 5-15 hr, and ubiquitous weaker transient horizontal fields (Lites et al 2008, Ishikawa & Tsuneta, 2008, 2009). Polar region in 2007 have abundant vertical fields much stronger than the quiet Sun. Unipolar appearance and disappearance of the kG vertical patches must be closely related to properties of the horizontal flow field in the polar region. Difference and similarity between the quiet sun and the polar region are summarized, and its implication for solar dynamo will be discussed. All the open field lines forming the polar coronal hole essentially originate from such magnetic patches, and the fast solar wind would emanate from these vertical flux tubes seen in the photosphere. We conjecture that vertical flux tubes with large expansion around the photospheric-coronal boundary serve as efficient chimneys for Alfven waves that accelerate the solar wind. Indeed, we discovered propagating Alfven waves (kink mode) with magneto-acoustic waves (sausage mode) in the solar photosphere with period of 4-13 minutes with Hinode spectro-polarimeter (Fujimura and Tsuneta, 2009). We found that these fluctuations are superposition of ascending and descending Alfven waves with almost equal intensities from the analysis of the phase relationship between transverse magnetic and velocity fluctuations. Aflven waves along flux tubes in the quiet sun appear to be efficiently reflected back probably at photosphere-corona boundary. It would be very interesting to measure possible change in the reflectivity of Alfven waves depending on the magnetic environment.

Tuesday October 28, 2008
Dr. José Antonio Bonet, Dr. Jorge Sánchez-Almeida
Instituto de Astrofísica de Canarias, Spain


We have discovered small whirlpools in the Sun, with a size similar to the terrestrial hurricanes (<0.5 Mm). The theory of solar convection predicts them, but they had remained elusive so far. The vortex flows are created at the downdrafts where the plasma returns to the solar interior after cooling down, and we detect them because some magnetic bright points (BPs) follow a logarithmic spiral in their way to be engulfed by a downdraft. Our disk center observations show 0.009 vortexes per Mm2, with a lifetime of the order of 5 min, and with no preferred sense of rotation. They are not evenly spread out over the surface, but they seem to trace the supergranulation and the mesogranulation. These observed properties are strongly biased by our type of measurement, unable to detect vortexes except when they are engulfing magnetic BPs.

Upcoming talks

  • TODAY: Sistema de control de EST
    Jorge Quintero Nehrkorn
    Friday October 7, 2022 - 10:00 GMT+1  (Aula)
  • TBD
    Dr. Roger Hoyland
    Friday October 14, 2022 - 10:00 GMT+1  (Aula)

More upcoming talks

Recent Colloquia

Recent Talks