Formation history of old open clusters constrained by detailed asteroseismic analysis of red giant stars observed by Kepler

Dr. Enrico Corsaro

Abstract

Stars originate by the gravitational collapse of a turbulent molecular cloud of a diffuse medium, and
are often observed to form clusters. Stellar clusters therefore play an important role in our
understanding of star formation and of the dynamical processes at play. However, investigating the
cluster formation is difficult because the density of the molecular cloud undergoes a change of
many orders of magnitude. Hierarchical-step approaches to decompose the problem into different
stages are therefore required, as well as reliable assumptions on the initial conditions in the clouds.
In this talk I will report for the first time the use of the full potential of NASA Kepler
asteroseismic observations coupled with 3D numerical simulations, to put strong constraints on the
early formation stages of old open clusters. Thanks to a Bayesian peak bagging analysis of about 50
red giant members of NGC 6791 and NGC 6819, the two most populated open clusters observed
in the nominal Kepler mission, I derive a complete set of detailed oscillation mode properties for
each star, with thousands of oscillation modes characterized. I therefore show how these
asteroseismic properties lead to a discovery about the rotation history of stellar clusters. Finally,
the observational findings will be compared with hydrodynamical simulations for stellar cluster
formation to constrain the physical processes of turbulence, rotation, and magnetic fields that are
in action during the collapse of the progenitor cloud into a proto-cluster.

About the talk

Formation history of old open clusters constrained by detailed asteroseismic analysis of red giant stars observed by Kepler
Dr. Enrico Corsaro
Service d'Astrophysique, IRFU/DRF-CNRS/CEA Saclay
Tuesday June 21, 2016
en     en