Nanocosmos : An experimental and observational approach to the study of dust formation in evolved stars

Prof. Jose Cernicharo

Abstract

Evolved stars are factories of cosmic dust. This dust is made of tiny grains that are injected into the interstellar medium and plays a key role in the evolution of astronomical objects from galaxies to the embryos of planets. However, the processes involved in dust formation and evolution are still a mystery. The increased angular resolution of the new generation of telescopes will provide for the first time a detailed view of the conditions in the dust formation zone of evolved stars, as shown by our first observations with ALMA. The aim of the NANOCOSMOS project is to take advantage of these new observational capabilities to change our view on the origin and evolution of dust. We will combine astronomical observations, modelling, and top-level experiments to produce stardust analogues in the laboratory and identify the key species and steps that govern the formation of these nanoparticles. We will build two innovative setups: the Stardust chamber to simulate dust formation in the atmosphere of evolved stars, and the gas evolution chamber to identify novel molecules in the dust formation zone. We will also improve existing laboratory setups and combine different techniques to achieve original studies on individual nanoparticles, their processing to produce complex polycyclic aromatic hydrocarbons, the chemical evolution of their precursors and their reactivity with abundant astronomical molecules. Our simulation chambers will be equipped with state-of-the-art in situ and ex situ diagnostics. Our astrophysical models, improved by the interplay between observations and laboratory studies, will provide powerful tools for the analysis of the wealth of data provided by the new generation of telescopes.

The synergy in NANOCOSMOS between astronomers, vacuum and microwave engineers, molecular and plasma physicists, surface scientists, including both experimentalists and theoreticians is the key to provide a cutting-edge view of cosmic dust.

About the talk

Nanocosmos : An experimental and observational approach to the study of dust formation in evolved stars
Prof. Jose Cernicharo
CSIC
Tuesday May 20, 2014
es     en