Research Division Seminar
Unusual abundance patterns across the Milky Way: Evident signatures of dissolving GC stars

Dr. J. G. Fernández-Trincado

Abstract

APOGEE contains more than hundred thousands new giant stars. This enabled
us to collected an unprecedented and homogeneous sample of giant stars with
light-element abundance variations similar to observed in “
*second-generation*” globular cluster stars. If they are really former
members of dissolved globular clusters, stars in these groups should show
some of the basic SG-like chemical patterns known for stars currently
belonging to the Milky Way globular clusters, such as depletion in C and O
together with N and Al enrichments. Here, I will present the results of an
updated census of *SG-like* stars from a near-infrared manual analysis
using the Brussels Automatic Stellar Parameter (BACCHUS) code to provide
the abundances of C, N, O, Mg, Si, Al, Fe, Ce and Nd for every line of
possible cluster member stars, which they migrate to the disk, halo and
bulge as unbound stars, and become part of the general stellar population
of the Milky Way. By combining wide-field time-series photometry with
APOGEE-2S spectroscopy data, we are in a good position to put the big
picture together. The VVV survey have produced a large variability dataset
towards the Milky Way bulge and disk, including data in the near-IR (J and
Ks). These data will allow us to place constraints on the “polluters" that
are responsible for the chemical peculiarities, with candidates including
TP-AGB stars, binary mass transfer, accretion of material from the winds of
AGB stars, etc.  A cross match between VVV sources and APOGEE targets is
ongoing.

About the talk

Unusual abundance patterns across the Milky Way: Evident signatures of dissolving GC stars
Dr. J. G. Fernández-Trincado
Universidad de Atacama, Copiapó, Chile
Tuesday January 15, 2019 - 10:30 GMT  (Aula)
en     en
iCalendar Google Calendar