Found 6 talks width keyword solar photosphere

nataliia_shchukina_150205s
Thursday February 5, 2015
Dr. Nataliia Shchukina
Main Astronomical Observatory, National Academy of Sciences, Kyiv

Abstract

The solar abundance of chemical elements play an important role in addressing such important issues as the formation, structure, and evolution of the Sun and the solar system, the origin of the chemical elements, the evolution of stars and galaxies. Despite the large number of papers published on this issue, debates about the solar composition of the Sun continue. In this talk we start summarizing the current understanding of the solar abundances of iron and CNO elements, which play a crucial role on the determination of the solar metallicity. We then pay especial attention to the impact of the quiet Sun magnetism on the determination of the abundances of these elements. The solar photosphere is significantly magnetized, due to the ubiquitous presence of a small-scale magnetic field whose mean strength is thought to be of the order of 100 gauss. Here we address the problem of the determination of the abundances of chemical elements taking into account the significant magnetization of the quiet Sun photosphere. To this end, we use 3D models of the quiet solar photosphere resulting from a state-of-the-art magneto-convection simulation with small-scale dynamo action where the net magnetic flux is zero. We conclude that if the magnetism of the quiet solar photosphere is mainly produced by a small-scale dynamo,then its impact on the determination of the solar abundance of iron and CNO elements is negligible.


rob_rutten_140319s
Wednesday March 19, 2014
Prof. Rob Rutten

Abstract

The chromosphere is the interface between the photospheric solar surface and the outer corona and wind.  In this complex domain the
solar gas becomes transparent throughout the ultraviolet and in the strongest spectral lines while magnetic pressure becomes dominant over gas pressure even in weak-field regions.  Fine-scale magnetically caused or guided dynamic processes in the chromosphere constitute the roots of mass and energy loading of the corona and solar wind. Notwithstanding this pivotal role the chromosphere remained ill-understood after its basic NLTE radiation physics was formulated in the 1960s and 70s.  Presently, both chromospheric observation and
chromospheric simulation mature towards the required sophistication.  The open-field features seem of greater interest than the easier-to-see closed-field features. For the latter, the grail of coronal topology and eruption prediction comes in sight.

I will start with an introductory overview, show movies to present the state of art in observation and simulation, and treat some
recent success stories in more detail.


alberto_sainz_dalda_131024s
Thursday October 24, 2013
Dr. Alberto Sainz-Dalda
Stanford-Lockheed Institute for Space Research

Abstract

Flares are among the most energetic magnetic solar phenomena. They are often accompanied by ejections of charged particles, which have a direct influence on the Earth in terms of Aurora or radio and satellite outages. The sudden nature of flares - some of them only last minutes - makes them an elusive feature when observed from ground-based telescopes. These measurements are especially challenging when we focus on magnetic fields and velocities in the different solar layers where flares develop and occur. I will present flare observations taken with different instruments, each targeting different observables, and I will show what we can learn from ground-based polarization measurements.


Enric_Priest_130110s
Thursday January 10, 2013
Prof. Eric Priest
St Andrews University

Abstract

This talk will give an overview of our understanding of the Sun in the 1960's, the major discoveries since then, and the main questions that need to be answered in future. It will focus on the role of the magnetic field in the solar interior, the photosphere, prominences, coronal heating and eruptive flares.


jorge_sanchez_almeida_100513s
Thursday May 13, 2010
Dr. Jorge Sánchez Almeida
Instituto de Astrofísica de Canarias, Spain

Abstract

We present a visual determination of the number of bright points (BPs) existing in the quiet Sun, which are structures though to trace intense kG magnetic concentrations. The measurement is based on a 0.1 arcsec angular resolution G-band movie obtained with the Swedish Solar Telescope at the solar disk center. We find 0.97 BPs/Mm2, which is a factor three larger than any previous estimate. It corresponds to 1.2 BPs per solar granule. Depending on the details of the segmentation, the BPs cover between 0.9% and 2.2% of the solar surface. Assuming their field strength to be 1.5 kG, the detected BPs contribute to the solar magnetic flux with an unsigned flux density between 13G and 33G. If network and inter-network regions are counted separately, they contain 2.2 BPs/Mm2 and 0.85 BPs/Mm2, respectively.

jorg_buchner_091111s
Wednesday November 11, 2009
Dr. Jörg Büchner
Max-Planck Institut für Sonnensystemforschung, Germany

Abstract

The dynamics of the solar atmosphere is largely controlled by its magnetic coupling to the photosphere of the Sun. Since the solar magnetic field is complex, numerical simulation must be utilized to investigate the coupling processes. Results will be shown of treating this way the two unresolved issues - the heating of the corona and the acceleration of the solar wind.

« Newer Older »