Found 14 talks width keyword particle physics

Video
Thursday November 17, 2016
Dr. Marina Manganaro
IAC

Abstract

The Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes reported the discovery of the most distant gamma-ray source ever observed at very high energies, thanks to the “replay” of an enormous flare by a galactic gravitational lens as foreseen by Einstein’s General Relativity. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components separated by a 10–12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma-ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data obtained by Fermi-LAT and MAGIC are used to set constraints on the extragalactic background light. Very high energy gamma-ray emission was detected from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray source detected to date. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broadband emission can be modeled in the framework of a two-zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.

Work published in A&A 595, A98 (2016) ( http://www.aanda.org/articles/aa/abs/2016/11/aa29461-16/aa29461-16.html)

https://magic.mpp.mpg.de/outsiders/results/magic-highlights-5/

http://www.iac.es/divulgacion.php?op1=16&id=1133


Video
Tuesday October 30, 2012
Dr. Alexander Unzicker
Pestalozzi-Gymnasium, Munich, Germany

Abstract

The concordance model of cosmology with its constituents dark matter and dark Energy is an established description of some anomalous observations. However, a series of additional contradictions indicate that the current view is far from satisfactory. Rather than describing observations with new numbers, it is argued that science should reflect its method, considering the fact that real progress was usually achieved by simplification. History, not only with the example of the epicycles, has shown many times that creating new ad-hoc concepts dominated over putting in doubt what had been established earlier. Also critical astrophysicists often believe that lab-tested particle physics has reliable evidence for its model. It is argued instead that the very same sociological and psychological mechanisms have been at work and brought particle physics in a still more deperate situation long ago. As an example, a couple of absurdities of the recent Higgs boson announcements are outlined. It seems inevitable that physics needs a new culture of data evaluation, raw data and source code must become equally transparent and openly accessible.


Video
Monday October 22, 2012
Dr. Seigo Miyamoto, Dr. Valeri Tioukov
ERI, University of Tokyo, Japan
INFN, Napoli, Italy

Abstract

The origin and structure of the Earth's crust is still a major question. Current measurements of the nearby crust are based largely on seismic, gravimetric and electrical  techniques. In this talk, we introduce a novel method based on cosmic-ray muons to create a direct snapshot of the density profile within a volcano (and/or other geological features).  By measuring the muon
absorption along the different paths through an object (volcano, mountain, a fault, ...), one can deduce the density profile within the object. The major feature of this
technique makes possible for us to perform a tomographic measurement by placing two or more cosmic ray detection
systems around the object. Another strong point of this technique is the possibility to carry out fulltime monitoring, since  muons are incessantly arriving, recalling they are
the most numerous energetic charged particles at sea level.


Video
Thursday April 7, 2011
Dr. Manuel Aguilar Benítez de Lugo
CIEMAT, CERN

Abstract

El estudio de la radiación cósmica ha sido la herramienta fundamental para avanzar en el conocimiento del Universo. La instrumentación experimental ha sido muy variada utilizándose para su ubicación laboratorios convencionales, globos sonda, satélites y plataformas espaciales. Está previsto que en 2011 la Estación Espacial Internacional esté totalmente operativa y disponible para la realización de medidas precisas y de larga duración de las componentes electromagnética y cargada de la radiación cósmica en ausencia de contaminación atmosférica. Una colaboración internacional ha construido un detector de física de partículas elementales, el espectrómetro AMS−02, para la realización de este tipo de medidas, algunas de las cuales tienen extraordinario interés en Astrofísica de Partículas, una disciplina científica fronteriza entre la Física de Partículas Elementales, la Astrofísica de Altas Energías y la Cosmología. En la planificación de la NASA este instrumento será enviado a la Estación Espacial en el año 2011. En esta conferencia se describirá la Estación Espacial Internacional (ISS) y el programa científico de AMS−02, en particular la búsqueda de antimateria cósmica primaria y la posible observación de señales de materia oscura.


Video
Thursday February 24, 2011
Prof. Antonio Dobado
Universidad Complutense de Madrid, Spain

Abstract

According to Quantum Chromodynamics, which is the well established theory of strong interactions, quark and gluons are forced to live inside hadrons because of the property of confinement. However, under extreme conditions of temperature and pressure, a new phase called quark-gluon plasma is possible, where quarks and gluons became basically free. In the last years it has been possible to study this phase experimentally by using new facilities called Heavy Ion Colliders like the RHIC (Brookhaven) or the LHC (CERN).


Video
Tuesday December 14, 2010
Dr. Karsten Berger
Instituto de Astrofísica de Canarias, Spain

Abstract

This seminar talk will give a short overview of the current status of the field of Astroparticle Physics. The subject includes a great variety of instruments working in different energy ranges (from a few MeV to 1020 eV) and studying different particles (neutrinos, protons, gamma-rays and more). Finally, a short discussion regarding the connection between the observations and the physics at the Large Hadron Collider will be discussed.

Video
Thursday November 25, 2010
Prof. Frank Close
University of Oxford, UK

Abstract

Rutherford discovered the atomic nucleus in 1912 in an experiment on a table top. The LHC will be producing its first major results by 2012, involving teams of thousands and apparatus that is bigger than Rutherford's entire laboratory. How did science come to this, and what are the questions the LHC hopes to answer? What is Higgs' boson, and is it really Higgs that invented it? I will explore the role of symmetry and asymmetry in physics, and illustrate how the ideas that have been associated with Higgs' name have a long history.

Video
Tuesday November 23, 2010
Dr. Karsten Berger
Instituto de Astrofísica de Canarias, Spain

Abstract

This seminar talk will give a short overview of the current status of the field of Astroparticle Physics. The subject includes a great variety of instruments working in different energy ranges (from a few MeV to 1020 eV) and studying different particles (neutrinos, protons, gamma-rays and more). Finally, a short discussion regarding the connection between the observations and the physics at the Large Hadron Collider will be discussed.

Video
Tuesday February 23, 2010
Dr. Carlos Hernández-Monteagudo
Max-Planck Institute for Astrophysics, Germany

Abstract

The Atacama Cosmology Telescope (ACT) has been observing the southern sky in the millimeter range with an angular resolution at the arc-minute level. An analysis of 228 square degrees observed at 148 GHz along a stripe centered at declination -53 degrees reveals the presence of the Silk damping tail in the temperature angular power spectrum of the Cosmic Microwave Background (CMB). This decaying tail becomes truncated by a rising spectrum at scales corresponding to few arcmins (l ~ 3000) whose origin is compatible with a unclustered population of unresolved point sources and some residual anisotropy due to Compton scattering of CMB photons off free electrons (the Sunyaev-Zel'dovich effect). Comparisons with other observations and constraints on different components giving rise to this secondary spectrum are discussed.

Video
Thursday September 17, 2009
Dr. Brigitte Falkenburg
Technische Universität Dortmund, Germany

Abstract

History: astroparticle physics emerged from particle physics and connects it to astrophysics. Early particle physics was based on cosmic ray studies. The 1930s and 1940s were dominated by the discovery of new particles (positron, muon, pion) and the problems of their identification. In the 1950s, the era of the big accelerators began. Recent astroparticle physics started in the 1980s, with solar neutrino measurements and the investigation of cosmic rays by means of particle detectors.


« Newer 1 | 2 Last >>