Found 18 talks width keyword SDSS

KNSjIDa_onA-thumbnail
Thursday June 10, 2010
Dr. Jorge Sánchez Almeida
Instituto de Astrofísica de Canarias, Spain

Abstract

Using the k-means cluster analysis algorithm, we carry out an unsupervised classification of all galaxy spectra in the seventh and final Sloan Digital Sky Survey data release (SDSS/DR7). Except for the shift to rest-frame wavelengths and the normalization to the g-band flux, no manipulation is applied to the original spectra. The algorithm guarantees that galaxies with similar spectra belong to the same class. We find that 99% of the galaxies can be assigned to only 17 major classes, with 11 additional minor classes including the remaining 1%. The classification is not unique since many galaxies appear in between classes; however, our rendering of the algorithm overcomes this weakness with a tool to identify borderline galaxies. Each class is characterized by a template spectrum, which is the average of all the spectra of the galaxies in the class. These low-noise template spectra vary smoothly and continuously along a sequence labeled from 0 to 27, from the reddest class to the bluest class. Our Automatic Spectroscopic K-means-based (ASK) classification separates galaxies in colors, with classes characteristic of the red sequence, the blue cloud, as well as the green valley. When red sequence galaxies and green valley galaxies present emission lines, they are characteristic of active galactic nucleus activity. Blue galaxy classes have emission lines corresponding to star formation regions. We find the expected correlation between spectroscopic class and Hubble type, but this relationship exhibits a high intrinsic scatter. Several potential uses of the ASK classification are identified and sketched, including fast determination of physical properties by interpolation, classes as templates in redshift determinations, and target selection in follow-up works (we find classes of Seyfert galaxies, green valley galaxies, as well as a significant number of outliers). The ASK classification is publicly accessible through various Web sites.


71zcyRQlOGw-thumbnail
Thursday March 18, 2010
Prof. James J. Binney
Rudolf Peierls Centre for Theoretical Physics, Oxford University, UK

Abstract

The study of the Milky is expected to have a major impact on our understanding of how galaxies form and evolve. "Near-field cosmology" is being vigorously pursued through a series of major surveys of the Galaxy's stellar content (2-MASS, SDSS, RAVE, Hermes, Apogee, Gaia) that are either in hand or pending. It will be argued that what we want to know is deeply buried in these data and can only be extracted by comparing the surveys with a hierarchy of dynamical models of ever increasing complexity. Work currently being done to build such hierarchical models will be described, and some early results from this work will be summarised.

TbTGgmv9Z_k-thumbnail
Monday February 8, 2010
Dr. Roberto Cid Fernandes
Universidade Federal de Santa Catarina, Florianopolis, Brazil

Abstract

This talk is divided into two related parts. First, we will call your attention to a basic, but often overlooked worrying fact, and presents ways of dealing with it. The fact is: an enormous number of galaxies in surveys like the SDSS have emission lines which are too weak (low S/N) to be classified by usual schemes (ie, diagnostic diagrams). It turns out that most of these are AGN-like, so ignoring them on the basis of low S/N (which most people do) leaves as much as 2/3 of these emission line galaxies unaccounted for. The solution: We present a number of alternative methods to rescue this numerous population from the classification limbo. We find that about 1/3 of these weak-line galaxies are massive, metal rich star-forming systems, while the remaining 2/3 are more like LINERs. In the second part, we revisit the old idea by Binette et al (1994) that post-AGB stars can account for the emission line properties of some galaxies. A "retired galaxy" model is presented and compared to data in the SDSS. We find that about 1/4 of the galaxies classified as LINERs in the SDSS are consistent with this model, where all ionizing radiation is of stellar origin. More dramatically, nearly 100% of weak-line LINERs are perfectly consistent with being just retired galaxies, with no active nucleus. If these ideas are correct, contrary to current practice, relatively few LINERs should be counted as bona fide AGN.

JUBpxnfCjO8-thumbnail
Wednesday April 22, 2009
Dr. Daniel Nestor
Institute of Astronomy, University of Cambridge, UK

Abstract

Large-scale outflows from galaxies are a crucially important yet poorly understood aspect of galaxy evolution. They redistribute gas and metals into the IGM, regulate star formation, affect the galaxy luminosity function and mass-metallicity relation, etc. Unfortunately, their detailed context in galaxy evolution is difficult to understand: locally, they are identified and studied in heterogeneous manners, while we have only recently begun to study them on cosmological scales and then only in known bright, starbursting galaxies. I will discuss increasing evidence that the so-called ultra-strong MgII intervening quasar absorbers select galactic superwinds over a large range of redshift in a manner independent of luminosity. As superwinds cover a small fraction of the sky at any epoch, only with recent huge quasar absorption lines surveys has it been possible to identify significant numbers of outflows in this manner. I will present new results from several of our studies -- including the measurement of the average SFR of their hosts using [O II] emission from SDSS composite spectra, WIYN, Gemini and WHT imaging of the superwind environments, Gemini/GMOS spectroscopy of superwind host galaxies, and VLT/UVES echellegrams of the absorption lines -- with the aim of understanding the nature of the outflows, their host galaxies, environments, and their evolution over cosmic time.

2uX1nL5kwN8-thumbnail
Thursday January 29, 2009
Dr. Christopher Watson
University of Belfast, Northern Ireland

Abstract

SuperWASP is the UK's leading extra-solar planet detection program, having detected 22 of the 52 transiting planets known to date. This stems from the instruments ability to image ~500 square degrees every 60sec down to 16th mag (equivalent to the whole visible sky every 20 minutes). Recent experiments have shown that the data from SuperWASP can be reduced with 1 min of it being obtained and with further software development we will be able to identify transient sources within minutes of their observation. Detailed analysis of SuperWASP-N data has shown many populations of transient objects, including rapidly variable objects, which seem to correspond to extremely faint objects in the Sloan survey. Spectroscopy of these objects has proved challenging.

f9IF_44YCe8-thumbnail
Wednesday January 28, 2009
Dr. Francesco Sylos Labini
Institute for Complex Systems, CNR, Italy

Abstract

The Sloan Digital Sky Survey is currently the largest spectroscopic survey of extragalactic objects and one of the most ambitious observational programs ever undertaken in astronomy, measuring about 1 million redshifts and thus providing a three dimensional mapping of the local universe up to a depth of several hundreds of Mpc. The main characteristic of galaxy distribution in this survey, and in the Two degree Field Galaxy redshift Survey completed few years ago, is that large scale structures have been found to extend to scales of the order of hundreds of mega parsecs. However the standard determination of a characteristic length scale, statistically describing galaxy correlations, is of only few mega parsecs: the standard explanation of this apparent mismatch is that large scale structures have small amplitude relative to the average density. We show that, in the newest galaxy samples, large scale structures are quite typical and correspond to large fluctuation in the galaxy density field, making the standard interpretation untenable. We show that the standard statistical analysis is affected by systematics which are due to inconsistent assumptions. We point out that standard theoretical models of structure formation are unable to explain the existence of the large fluctuations in the galaxy density field detected in these samples. This conclusion is reached in two ways: by considering the scale, determined by a linear perturbation analysis of a self-gravitating fluid, below which large fluctuations are expected in standard models and through the determination of statistical properties of mock galaxy catalogs generated from cosmological N-body simulations. Finally we discuss the implications of this results in relation to recent attempts to describe inhomogeneous models in general relativity and to the recent discoveries of large scale coherent bulk flows.

W47wF8kcG9c-thumbnail
Thursday July 24, 2008
Dr. Rubén Sánchez Janssen
Instituto de Astrofísica de Canarias, Spain

Abstract

Dwarf galaxies, being the most numerous and fragile galaxy population, provide unique clues on both the formation of baryonic systems and the role played by the environment in galaxy evolution. In this short talk, I will present the main observational properties of the dwarf galaxy population in a sample of 88 nearby (z < 0.1) galaxy clusters drawn from the SDSS-DR4. By comparing the different properties (spatial and velocity distribution, colour, etc.) of red and blue dwarfs we attempt to constrain the scenarios for the evolution of galaxies in high-density environments.

E8DeX9qwUzY-thumbnail
Monday June 2, 2008
Dr. Sepehr Arbabi Bidgoli
Iranian National Observatory Project, Iran

Abstract

The plan of the Iranian National Observatory (INO) is to build within the next 5 years an active 3 meter telescope with a possible adaptive secondary on a mountain with more than 3000m height. We plan to have a remote-access and encourage the international community of astronomers to cooperate and to use up to 70% of the observing time. For the optical design and the first instruments we focus on few topics of astronomy. In the first part of my talk I will give a status report of this project and review the current proposals for the science case. In the second part of my talk I will introduce my own research interest and talk about the voids in the large scale structure of the universe. We have done studies on the systematics of void search algorithms in 2D galaxy samples, a 3D void analysis of the SDSS data release 6, and some approaches for theoretical modeling of the void properties and statistics. The Iranian National Observatory project and its science case

<< First 1 | 2 Older »

Upcoming talks


More upcoming talks

Featured talks