Found 5 talks width keyword polarimetry

Tuesday April 18, 2023
University of Oxford



Nowadays, it is widely accepted that most galaxies undergo an active phase in their evolution. The impact of the energy released by active galactic nuclei (AGN) in the interstellar medium (ISM) of the host galaxy has been proposed as a key mechanism responsible for regulating star formation (SF). The mid-infrared (IR) is the ideal spectral range to investigate the nuclear/circumnuclear regions of AGN since dust extinction is significantly lower compared to the visible range. Furthermore, it provides unique tracers to study the AGN-SF connection such as H2 rotational lines, fine structure lines and Polycyclic Aromatic Hydrocarbons (PAHs). PAHs are also a powerful tool to characterize the ISM in different environments.

Recently, we presented new JWST/MIRI MRS spectroscopy of three Seyfert AGN in which we compare their nuclear PAH emission with that of star-forming regions. This study represents the first of its kind to use sub-arcsecond angular resolution data of local luminous Seyferts (Lbol > 10^44.5 erg/s) with a wide wavelength coverage (4.9-28.1 μm). Our results showed that a suite of PAH features is present in the innermost parts of these Seyfert galaxies. We found that the nuclear regions of AGN lie at different positions of the PAH diagnostic diagrams, whereas the SF regions are concentrated around the average values of SF galaxies. Furthermore, we find that the nuclear PAH emission mainly originates in neutral PAHs while, in contrast, PAH emission originating in the star forming regions favours small ionised PAH grains. Therefore, our results provide evidence that the AGN have a significant impact on the ionization state and size of the PAH grains on scales of ~142-245 pc. This is fundamental since PAH bands are routinely used to measure star-formation activity in near and far SF and active galaxies.

Finally, I will summarise our ongoing JWST work within the GATOS (Galactic Activity, Torus and Outflow Survey) collaboration. In particular, I will focus on our recent study about the survival of PAH molecules in AGN-driven outflows.

Tuesday October 28, 2014
High Altitude Observatory of the National Center for Atmospheric Research


The Chromosphere and Prominence Magnetometer (ChroMag) is a synoptic  instrument with the goal of quantifying the intertwined dynamics and  magnetism of the solar chromosphere and in prominences through imaging  spectro-polarimetry of the full solar disk in a synoptic fashion. The  picture of chromospheric magnetism and dynamics is rapidly developing,  and a pressing need exists for breakthrough observations of  chromospheric vector magnetic field measurements at the true lower  boundary of the heliospheric system. ChroMag will provide measurements  that will enable scientists to study and better understand the  energetics of the solar atmosphere, how prominences are formed, how  energy is stored in the magnetic field structure of the atmosphere and  how it is released during space weather events like flares and coronal  mass ejections. An essential part of the ChroMag program is a commitment  to develop and provide community access to the `inversion' tools  necessary to interpret the measurements and derive the  magneto-hydrodynamic parameters of the plasma. Measurements of an  instrument like ChroMag provide critical physical context for the Solar  Dynamics Observatory (SDO) and Interface Region Imaging Spectrograph  (IRIS) as well as ground-based observatories such as the future Daniel  K. Inouye Solar Telescope (DKIST). A prototype is currently deployed in  Boulder, CO, USA. We will present an overview of instrument design and  capabilities, show some recent observations, and discuss the future of  the project.

Thursday March 22, 2012


Solar magnetism may look deceptively boring (a rather common star with relatively low activity). As it turns out, even the most quiet areas of the Sun (away from the sunspots) harbour a rich and interesting magnetic activity which is extremely complex and dynamic at spatial scales as small as ~100 km. And more importantly, this magnetism permeates most of the Sun, all the time. Therefore, it is not surprising that it might play an important role for solving some longstanding questions of stellar magnetism as: how is the million degree corona maintained when all sunspots have disappeared during the minimum of magnetic activity? And this is of interest not only for solar physics but for stellar astrophysics too, since it is expected that every star with a convective envelope harbours small-scale magnetic activity that we cannot hope to observe with the great detail we observe it in the Sun. From the first evidence of the presence of magnetic fields in the quiet areas of the Sun to the discovery of the smallest organised magnetic structures ever observed in a stellar surface just 30 years have passed. In this seminar, I will give an overview of our present knowledge about the small-scale quiet Sun magnetism. In particular, I will show how small loops of sizes of several hundreds of kilometers appear in the surface and travel across the solar atmosphere, reaching upper layers and having direct implications on chromospheric (coronal) magnetism. I will also show some of the properties of these newly discovered magnetic structures such as their spatial distribution, a key ingredient for understanding their origin.

Thursday June 23, 2011
Institut d'Astrophysique Spatiale; Université Paris Sud, Paris, France


At the end of 2008, on ideas of teams from the Observatoire de la Côte d’Azur (OCA) and IAC, the CoRoT satellite observed the star HD 46375, known to host a non-transiting Saturn-mass exoplanet with a 3.023 day period. HD 46375 is the brightest star with a known close-in planet in the CoRoT accessible field of view. As such, it was targeted by the CoRoT additional program and observed in a CCD normally dedicated to the asteroseismology program, to obtain an ultra-precise photometric lightcurve and detect or place upper limits on the brightness of the planet. In addition, a ground-based support was simultaneously performed with the high-resolution NARVAL spectro-polarimeter to constrain the stellar atmospheric and magnetic properties. In this seminar, I will present the main results, in particular the stellar constrain we obtained thanks to the detection of the oscillation mode signature and the plausible detection of the planetary signal, which, if confirmed with future observations, would be the first detection of phase changes in the visible for a non-transiting planet.

Monday June 13, 2011
Astronomical Institute Utrecht, the Netherlands


ExPo is an imaging polarimeter that has been built in Utrecht University. ExPo works in the visible, and it combines the dual-beam technique, together with very short exposure times and a high polarization sensitivity. After four successful campaigns at the William Herschel Telescope, we have obtained polarization images of circumstellar environments around T Tau's and Herbig Ae's stars, evolved (post-AGB) stars and planets like Venus and Saturn. Our results prove the utility of imaging polarimetry to characterize faint structures around very different objects. In this talk I will go through the instrument details, and I will show some of our science results.

« Newer Older »

Upcoming talks

More upcoming talks

Recent Colloquia

Recent Talks