Found 20 talks width keyword telescope

sekjhBwBOJ4-thumbnail
Friday October 9, 2015
Prof. Terry Oswalt
Embry-Riddle Aeronautical University

Abstract

For over 20 years, the Southeastern Association for Research in Astronomy (SARA) has operated a remotely-accessible 1-m-class telescope at the Kitt Peak National Observatory near Tucson, Arizona that has served as a focus for faculty and student research.  From its four charter institutional members, the SARA consortium has grown to include a dozen universities spanning Indiana to Florida.  In 2007, SARA assumed operations of a similar remotely-operated telescope at Cerro Tololo Interamerican Observatory in Chile.  SARA has most recently partnered with the Instituto de Astrofisica de Canarias (IAC) to automate and assume operations of the Jacobus Kapteyn Telescope (JKT) at the Roque des los Muchachos on La Palma.  This talk will provide a brief historical perspective on the SARA consortium as well as a summary of our facilities, research interests and prospects for the future.


yVmNoEaMnsU-thumbnail
Tuesday October 21, 2014
Dr. Michael Bode
Astrophysics Research Institute (Univ. John Moores Liverpoool)

Abstract

The Astrophysics Research Institute (ARI) was established at LJMU in 1992. Today the Institute comprises around 70 staff and research students working on topics ranging from stellar evolution to cosmology. In this talk I will give an overview and some highlights of the work undertaken in recent years on Classical and Recurrent novae by the nova group of the ARI. This involves multi-frequency observations of both Galactic novae and those in Local Group galaxies and includes topics such as the exploration of their potential links to the progenitors of Type Ia supernovae. Along the way, I will briefly describe the work of the Liverpool Telescope on La Palma, one of whose primary science drivers is the efficient and effective observation of transient objects such as these, and look forward to our plans for the development of an even larger and faster-reacting robotic telescope at ORM - currently codenamed 'LT2".


xgHWF_YWD_w-thumbnail
Wednesday April 30, 2014
Prof. Tim de Zeeuw
ESO

Abstract

ESO is an intergovernmental organization for astronomy founded in 1962 by five countries. It currently has 14 Member States in Europe with Brazil poised to join as soon as the Accession Agreement has been ratified. Together these countries represent approximately 30 percent of the world’s astronomers. ESO operates optical/infrared observatories on La Silla and Paranal in Chile, partners in the sub-millimeter radio observatories APEX and ALMA on Chajnantor and is about to start construction of the Extremely Large Telescope on Armazones.

La Silla hosts various robotic telescopes and experiments as well as the NTT and the venerable 3.6m telescope. The former had a key role in the discovery of the accelerating expansion of the Universe and the latter hosts the ultra-stable spectrograph HARPS which is responsible for the discovery of nearly two-thirds of all confirmed exoplanets with masses below that of Neptune. On Paranal the four 8.2m units of the Very Large Telescope, the Interferometer and the survey telescopes VISTA and VST together constitute an integrated system which supports 16 powerful facility instruments, including adaptive-optics-assisted imagers and integral-field spectrographs, with half a dozen more on the way and the Extremely Large Telescope with its suite of instruments to be added to this system in about ten years time. Scientific highlights include the characterisation of the supermassive black hole in the Galactic Centre, the first image of an exoplanet, studies of gamma-ray bursts enabled by the Rapid Response Mode and milliarcsec imaging of evolved stars and active galactic nuclei. The single dish APEX antenna, equipped with spectrometers and wide-field cameras, contributes strongly to the study of high-redshift galaxies and of star- and planet-formation. Early Science results obtained with the ALMA interferometer already demonstrate its tremendous potential for observations of the cold Universe.


wbmLrl1X2pY-thumbnail
Thursday January 16, 2014
Dr. Chris Copperwheat
Liverpool John Moores University

Abstract

The robotic 2m Liverpool Telescope, based on La Palma, is owned and
operated by Liverpool John Moores University. It has a diverse
instrument suite and a strong track record in time domain science,
with highlights including early time photometry and spectra of
supernovae, measurements of the polarization of gamma-ray burst
afterglows, and high cadence light curves of transiting extrasolar
planets. In the next decade the time domain will become an
increasingly prominent part of the astronomical agenda with the
arrival of new facilities such as LSST, SKA, CTA, Gaia and the next
generation of exoplanet finders. Additionally, detections of
astrophysical gravitational wave and neutrino sources opening new
windows on the transient universe. To capitalise on this exciting new
era we intend to build Liverpool Telescope 2: a new robotic facility
on La Palma dedicated to time domain science. The next generation of
survey facilities will discover large numbers of variable and
transient objects, but there will be a pressing need for follow-up
observations for scientific exploitation, in particular spectroscopic
follow-up. Liverpool Telescope 2 will have a 4 metre aperture,
enabling optical/infrared spectroscopy of faint objects. Robotic
telescopes are capable of rapid reaction to unpredictable phenomena,
and for fast-fading transients like gamma-ray burst afterglows, this
rapid reaction enables observations which would be impossible on less
agile telescopes of much larger aperture. We intend Liverpool
Telescope 2 to have a world-leading response time, with the aim that
we will be taking data with a few tens of seconds of receipt of a
trigger from a ground- or space-based transient detection facility. In
this talk I will discuss the role for Liverpool Telescope 2 in the
2020+ astronomical landscape, the key science topics we hope to
address, and the results of our preliminary optical design studies.


Hc7umyWEVV0-thumbnail
Tuesday April 24, 2012
Dr. Thomas Eversberg
Deutsches Zentrum für Luft- und Raumfahrt, Bonn

Abstract

Golden Age of Astronomy” does not only influence professional but also amateur astronomy. Today, amateurs basically use the same technologies as the professionals. This includes the most important tool – spectroscopy. There is an important gap in professional astronomical spectroscopy which can be filled by amateurs and their smaller telescopes. Some stellar phenomena need longer time coverage, of order, e.g., some weeks. This is especially valid for binary stars. One such interesting target is Wolf-Rayet 140, a WR+O binary with a highly eccentric orbit and a period of about 8 years. The observation of its periastron passage in the visible wavelength range is valuable for measurements in other wavelength domains to understand the wind-wind shock interaction of both components and the global geometry and physics of the system. For this and some other massive star targets, a group of amateur and professional astronomers performed a successful campaign for 116 nights at the 50 cm Mons telescope at Teide observatory, supported by the IAC and embedded in a joint worldwide X-ray, visual and IR campaign. The group of observers was a mix of enthusiastic astronomers from various professions (e.g., physicists, a physics student, a chemist, a physician, a schoolboy, a pilot) but they all have been experienced and enthusiastic observers. The talk will highlight the most important results of this campaign


GRnlg6vSMU4-thumbnail
Thursday June 3, 2010
Prof. Colin Cunningham
UK Astronomy Technology Centre, ROE, UK

Abstract

Teams from industry, universities and institutes across Europe are contributing to the design and development phase of the European Southern Observatory's project to build the world's biggest optical/infrared telescope. I will outline some of exciting scientific prospects for a fully-adaptive 42m telescope, from studying exoplanets to the furthest galaxies, and then show how some of the technical challenges are being addressed. I will place special emphasis on the work UK teams are doing on instrumentation, detectors and adaptive optics.

2yFxHWnkzPU-thumbnail
Monday May 17, 2010
Dr. Vladimir Lipunov
Moscow State University and Sternberg Astronomical Institute, Russia

Abstract

The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 21. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovae (including SNIa), search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System, and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.

YrI3pQKfOIc-thumbnail
Friday November 6, 2009
Prof. Kazunari Shibata
Hida Observatories, Kyoto University, Japan

Abstract

The 3.8m optical and infrared telescope, which is Japan's first segmented mirror telescope, is now being constructed using the world's first super high precision, high speed grinding technology and the world's first truss structure drive system. This is the joint project between Kyoto University, Nagoya University, National Astronomical Observatory, and Nano-Optonics Energy (private company) with the budget of the Nnao-Optonics Energy and Dr Hiroshi Fujiwara (CEO of the Nano-Optonics Energy). The telescope will be completed in 2012 and installed in Okayama, and will become the biggest optical and infrared telescope in east Asia. The technologies for making this telescope such as (1) grinding technology, (2) segmented mirror, and (3) truss structure drive system are also basic technologies for the future extremely large telescope such as the 30m telescope. The scientific objective of the telescope is the search for the transient objects (gamma ray bursts, black hole binaries, stellar flares) and the extra solar planets. How this project has emerged and developed will be discussed in detail, including also the discussion about the possible future international collaboration.

2Oh0TUlcNtQ-thumbnail
Monday January 26, 2009
Dr. Paolo Molaro
INAF, Osservatorio di Trieste, Italy

Abstract

Jan Brueghel depicted telescopes in four paintings spanning the period between 1609 and 1621. We have investigated the nature and the origin of these telescopes. An optical "tube" that appears in the painting dated 1608-1612, and probably reproduced also in a painting of the 1621, represents one the earliest documentation of a Dutch spyglass which could even tentatively attributed to Sacharias Janssen or Lipperhey, thus prior to those made by Galileo. Other two instruments made of several draw-tubes which appear in the two paintings of 1617 and 1618 are quite sophisticated for the period and we argue that may represent early examples of Keplerian telescopes.

E8DeX9qwUzY-thumbnail
Monday June 2, 2008
Dr. Sepehr Arbabi Bidgoli
Iranian National Observatory Project, Iran

Abstract

The plan of the Iranian National Observatory (INO) is to build within the next 5 years an active 3 meter telescope with a possible adaptive secondary on a mountain with more than 3000m height. We plan to have a remote-access and encourage the international community of astronomers to cooperate and to use up to 70% of the observing time. For the optical design and the first instruments we focus on few topics of astronomy. In the first part of my talk I will give a status report of this project and review the current proposals for the science case. In the second part of my talk I will introduce my own research interest and talk about the voids in the large scale structure of the universe. We have done studies on the systematics of void search algorithms in 2D galaxy samples, a 3D void analysis of the SDSS data release 6, and some approaches for theoretical modeling of the void properties and statistics. The Iranian National Observatory project and its science case

<< First 1 | 2 Older »