Found 2 talks width keyword high-mass stars

P49boVPcyFE-thumbnail
Wednesday November 13, 2013
Prof. Rudolf Kudritzki
Institute for Astronomy, University of Hawaii at Manoa

Abstract

The determination of chemical composition and distances of galaxies is crucial for constraining the theory of galaxy formation and evolution in a dark energy and cold dark matter dominated universe. However, the standard technique using HII regions to determine the metallicity of star forming galaxies, nearby and at high redshift, is subject to large systematic uncertainties that are poorly understood and the determinination of accurate distances using Cepheids suffers from uncertainties caused by the metallicity dependence of the period luminosity relationship and extinction and crowding corrections. Multi-object spectroscopy of blue and red supergiant stars - the brightest stars in the universe at visual and NIR wavelengths - provides an attractive alternative. I will present results accumulated over recent years for galaxies in the Local Group and beyond out to a distance of 8 Mpc and will discuss the potential of future work with TMT and E-ELT. Combining the photon collecting power of these next generation telescopes with Adaptive Optics we will be able to study individual supergiant stars in galaxies as distant as the Coma cluster. With spectroscopy of the integrated light of young very massive Star Super Clusters and simple population synthesis techniques we can reach out ten times further.


I9IOEm7sJcs-thumbnail
Thursday January 19, 2012
Dr. Stan Owocki
Bartol Research Institute, University of Delaware, USA

Abstract

Massive stars lose mass through powerful, radiatively driven stellar winds. Building on the original "CAK" model for steady, spherical winds driven by line-scattering, this talk will review recent research on the multi-faceted nature of such wind mass loss under varied conditions, for example due to rapid rotation, magnetic channeling, binary interaction, or a luminosity near the Eddington limit. An overall theme is that wind mass loss can in this way lead to a wide variety of astrophysical phenomena, including bipolar nebulae, massive star magnetospheres, colliding winds or compact companion accretion, and luminous blue variable eruption. The discussion here will summarize these with an emphasis on their varied observational signatures.


« Newer Older »

Upcoming talks

  • TBD
    Donaji Esparza Arredondo
    Tuesday September 17, 2019 - 12:30  (Aula)
  • COLLOQUIA: TBD
    Prof. Michael Kramer
    Thursday October 3, 2019 - 10:30  (Aula)

More upcoming talks

Featured talks