Found 21 talks width keyword science

6-RdkV5dhfE-thumbnail
Tuesday November 23, 2021
Dr. Eva Villaver
CAB

Abstract

Planetary systems have been found systematically orbiting main sequence stars and red giants. But the detection of planets per se during the white dwarf phase has been more elusive with only 3 systems.  We have, however, ample indirect evidence  of the existence of planetary debris around these systems in the form of material acreted onto the white dwarf, disks and even planetesimals. In this talk, I will review how we can put the pieces together: how we can reconcile what we see in white dwarfs with what we can infer regarding the evolution of planetary systems from the main sequence phase.

 



PKmxNJtNCxk-thumbnail
Tuesday July 20, 2021
Dr. Sergey Yurchenko
University College of London

Abstract

The ExoMol project (www.exomol.com) provides comprehensive spectroscopic data (line lists) for the study of atmospheres of exoplanets and other hot bodies.  These line lists serve as input for models of radiative transport through hot atmospheres and are useful for a variety of terrestrial applications. The basic form of the database is extensive line lists; these are supplemented with partition functions, state lifetimes, cooling functions, Landé g-factors, temperature-dependent cross sections, opacities, k-coefficients and pressure broadening parameters. Currently containing 80 molecules and 190 isotopologues totaling over 700 billion transitions, the database covers infrared, visible and UV wavelengths. The field of the HR spectroscopy of exoplanets is growing extremely fast and urgently demands molecular data of high precision. Failure to detect molecules in atmospheres of exoplanets is often attributed to the lack of the underlying quality of
the line positions.  These developments have led us to begin a systematic attempt to improve the accuracy of the line positions for the line lists contained in the database. Our new ExoMolHD project aims to provide comprehensive line lists to facilitate their use in characterization of exoplanets using high resolution Doppler shift spectroscopy. Progress on this objective will be presented.


EdTwaVR_Wts-thumbnail
Thursday May 20, 2021
Dr. Guillaume Thomas
IAC

Abstract

At present, our understanding of the formation history of the MW is limited due to the complexity of observing the imprints of accretion events and of reproducing them in numerical simulations. Moreover, though being the only galaxy, in which the Galactic potential can be probed in detail, the distribution of mass in the MW, and hence of the dark matter, is poorly constraint, especially at large distances. In addition, the MW is not isolated, and it has recently been suggested that the infall of the LMC can induce a perturbation in the stellar and dark matter distribution of the MW. As a consequence, the details of the formation history of our Galaxy are still unknown, such as the number of accretion events, the mass of the accreted galaxies, and the epoch of these events. Yet this information is crucial to understand our environment and to constrain the theoretical models and simulations that try to reproduce it.

One of the major challenges of the field is that a tremendous number of multi-aspect (astrometric, photometric and spectroscopic) observations at significant depth is required to study the morphology, the kinematics and the chemistry of the outskirts of our Galaxy, where are located the signatures of these events. Hopefully, the advent of recent and incoming complementary large surveys, such as the European Gaia mission, UNIONS (Ultraviolet Near Infrared Optical Northern Survey), Pristine, Pan-STARRS (PS), WEAVE or LSST (Legacy Survey of Space and Time), is offering a new global point of view on our Galaxy’s halo, allowing us to precisely probe the Galactic potential our the MW, and to retrace itsaccretion history.

In this talk I will present recent works that have been conducted to better catarerized our Galaxy and its history with some of the existing surveys mentioned above. In addition, I will present the major improvement that will bring this new generation of large, multi-aspect surveys, to study both our Galactic history, as well as the fundamental nature of the dark matter.


kJUn5Qpr3dM-thumbnail
Tuesday May 4, 2021
Prof. Lyndsay Fletcher
University of Glasgow / University of Oslo

Abstract

A solar flare involves the conversion of magnetic energy stored in the coronal magnetic field into the kinetic energy of thermal and non-thermal particles, mass motion, and radiation. How this happens remains a central question in solar physics. A particular long-standing puzzle is how such a high fraction of the stored magnetic energy - up to a half - arrives in the kinetic energy of accelerated non-thermal particles. In this talk I will present an observational overview of solar flares with an emphasis on accelerated particles, discuss some ideas and constraints on particle acceleration, and present some new observations of the possible role of plasma turbulence in the acceleration process.

 


3-RXY8tY_Bw-thumbnail
Thursday April 29, 2021
Prof. Steen Hansen
COpenhagenUNi / DARK cosmology center

Abstract

The expansion of the Universe is in an accelerated phase. This
acceleration was first estabilished by observations of SuperNovae, and
has since been confirmed through a range of independent observations.

The physical cause of this acceleration is coined Dark Energy, and
most observations indicate that Einsteins cosmological constant
provides a very good fit. In that case, approximately 70% of the
energy of the Universe presently consists of this cosmological
constant.

I will in this talk address the possibility that there may exist other
possible causes of the observed acceleration. In particular will I
discuss a concrete model, inspired by the well-known Lorentz force in
electromagnetism, where Dark Matter causes the acceleration.  With a
fairly simple numerical simulation we find that the model appears
consistent with all observations.

In such a model, where Dark Matter properties causes the acceleration
of the Universe, there is no need for a cosmological constant.


7LC3P4PoKNM-thumbnail
Tuesday January 16, 2018
Dr. Carlos del Burgo
INAOE

Abstract

We employ a Bayesian method to infer stellar parameters from the PARSEC  v1.2S library of stellar evolution models and test the accuracy of these theoretical predictions. Detached eclipsing binaries are ideal for testing. We employ a compilation of 165 detached eclipsing binary systems of our galaxy and the Magellanic clouds with reliable metallicities and measurements for the mass and radius to 2 per cent precision for most of them. We complement the analysis with 107 stars that are closer than 300 pc, for which we adopted solar metallicity. The applied Bayesian analysis relies on a prior for the initial mass function and flat priors for age and metallicity, and it takes on input the effective temperature, radius, and metallicity, and their uncertainties, returning theoretical predictions for other stellar parameters of the binaries. Our research is mainly based on the comparison of dynamical masses with the theoretical predictions for the selected binary systems. We determine the precision of the models. Also, we derive distances for the binaries, which are compared with trigonometric parallaxes whenever possible. We discuss the effects of evolution and the challenges associated with the determination of theoretical stellar ages.


b3iyBYcn_MA-thumbnail
Thursday January 28, 2016
Dr. Francisco Kitaura
AIP

Abstract

The cosmological large-scale structure encodes a wealth of information about the origin and evolution of our Universe. Galaxy redshift surveys provide a 3-dimensional picture of the luminous sources in the Universe. These are however biased tracers of the underlying dark matter field. I will discuss the different components which are relevant to model galaxy bias, ranging from deterministic nonlinear, over non-local, to stochastic components. These effective bias ingredients permit us to save computational time and memory requirements, to efficiently produce mock galaxy catalogues. These are useful to study systematics of survey, test analysis tools, and compute covariance matrices to perform a robust analysis of the data. Moreover, this description permits us to implement them in inference analysis methods to recover the dark matter field and its peculiar velocity field. I will show some examples based on the largest sample of luminous red galaxies to date based on the final BOSS SDSS-III data release.


RbEwdGuMaGo-thumbnail
Tuesday January 26, 2016
Prof. Ron Kikinis
Harvard Medical School

Abstract

The amount of data available in image guided medical interventions and surgeries is growing at a rapid rate. More data per device and more devices present during individual procedures result in a situation, where the interventionalist is often overwhelmed by the amount and complexity of the data available. The lack of integration of the varying source of information is due to the lack of adopted standards and is accentuating this problem. The presentation will cover some of the root causes of this situation and discuss possible solutions.


s6pE7fjtBDc-thumbnail
Tuesday December 1, 2015
Dr. Marina Manganaro
IAC

Abstract

The search for detection of gamma-rays in the very-high-energy range (VHE, >100GeV) from distant AGNs by Imaging Atmospheric Cherenkov Telescopes (IACTs) gets very complicated at high redshifts, not only because of the lower flux due to the distance of the source, but also due to the consequent absorption of gamma-rays by the extragalactic background light (EBL), affecting VHE sources at z~0.1 and beyond. The farthest source ever detected in the VHE domain was the blazar PKS1424+240, at redshift z>0.6. In the last months MAGIC, a system of two 17 m of diameter IACTs located in the Canary island of La Palma, has been able to go beyond that limit and to push the boundaries for VHE detection to redshifts z~1. The two sources detected and analyzed, blazar S30218+35 (Atel discovery #6349) and FSRQ PKS1441+25 (Atel discovery #7416) are located at redshift z=0.944 and z=0.939 respectively. S30218+35 is also the first gravitational lensed blazar ever detected in VHE. The multiwavelength dataset collected allowed us to test for the first time the present generation of EBL models at such distances. I will show results on MAGIC analysis on S30218+35 and PKS1441-25, including spectral energy distributions and EBL absorption studies, in a multi-wavelength context.


RxJr5fNohb8-thumbnail
Tuesday March 17, 2015
Prof. Malcolm Longair
University of Cambridge, UK

Abstract

Divulgation Lecture to Celebrate the International Year of Light and 150th Anniversary of Maxwell´s great paper on Electromagnetism of 1865.


« Newer 1 | 2 | 3 Last >>

Upcoming talks


More upcoming talks

Recent Colloquia


Recent Talks