Found 38 talks width keyword science

nBbFGfhVS10-thumbnail
Friday May 26, 2023
Dr. Sebastian F. Sanchez Sanchez
Universidad Nacional Autonoma de Mexico

Abstract

We present the extended data release of the Calar Alto Legacy Integral Field Area (CALIFA) survey (eDR). It comprises science-grade quality data for 895 galaxies obtained with the PMAS/PPak instrument at the 3.5 m telescope at the Calar Alto Observatory along the last 12 years, using the V500 setup (3700-7500Å, 6Å/FWHM) and the CALIFA observing strategy. It includes galaxies of any morphological type, star-formation stage, a wide range of stellar masses ( ∼10^7-10^12 Msun), at an average redshift of  ∼0.015 (90\% within 0.005 < z <0.05). Primarily selected based on the projected size and apparent magnitude, we demonstrate that it can be volume corrected resulting in a statistically limited but representative sample of the population of galaxies in the nearby Universe. All the data were homogeneously re-reduced, introducing a set of modifications to the previous reduction. The most relevant is the development and implementation of a new cube-reconstruction algorithm that provides an (almost) seeing-limited spatial resolution (FWHM PSF  ∼1.0").  Furthermore we present the analysis performed using the pyPipe3D pipeline for these dataset. We include a description of (i) the analysis performed by the pipeline, (ii) the adopted datamodel for the derived spatially resolved properties and (iii) the catalog of integrated, characteristics and slope of the radial gradients for a set of observational and physical parameters derived for each galaxy. All these data has been distributed through the following webpage: http://ifs.astroscu.unam.mx/CALIFA_WEB/public_html/


-lly6HXpvh8-thumbnail
Thursday May 25, 2023
Dr. Marie Korsaga
ObAS and UJKZ

Abstract

One of the most active areas of research of the last decade is undoubtedly the study of the effects of baryons on the observed dynamics of galaxies. This particularly led to the establishment of some fundamental scaling relations, which characterise the dependence of the abundance of baryons on the properties of galaxies' dark matter haloes. Among these fundamental relations, the stellar–to-halo mass relation appears to be one of the most investigated.
In this talk, I will present the less commonly explored neutral hydrogen-to-halo mass relation constructed using high-quality extended HI rotation curves of isolated rotationally-supported disk galaxies, selected from the SPARC and LITTLE THINGS databases. I will discuss how we constrain the dark matter halo of these galaxies using a Navarro-Frenk-White cuspy density profile and a semi-analytic Dekel-Zhao density profile and how we investigate the scaling relations between baryons and halo parameters.


6Iproe6Zwb4-thumbnail
Thursday May 4, 2023
Dr. Paul Beck
IAC

Abstract


Understanding stellar structure and evolution significantly impacts our understanding of the tight-knit evolution of galaxies and exoplanet systems. However, hidden behind the luminous layers of the stellar atmosphere, the deep interior of a star is eluding from direct measurements. The seismic study of waves propagating the deep interior provides the only way to measure the internal structure, dynamics, and mixing in any given star and compare it to theoretical models.

With the photometric data from space missions, such as the NASA Kepler telescope, a golden age has begun for seismology. In particular, the seismic studies of thousands of solar-like have led to numerous breakthroughs in our understanding of the stellar structure of red-giant stars. Complimentary information on stellar binarity, tidal forces, rotation, and lithium abundance provide additional constraints to characterize the advanced evolution of stars further and provide high-resolution insights into complex internal adjustments. Approaching a sample of ~1000 identified solar-like oscillators in binary systems, provided by the ESA Gaia and NASA TESS missions draws an exciting picture on the interaction of stellar and orbital evolution.

 

https://rediris.zoom.us/j/89275150368?pwd=QnNxc09KbmJMTmdaRmVGdjZYSlBqdz09
ID de reunión: 892 7515 0368

Código de acceso: 101169

https://youtube.com/live/6Iproe6Zwb4?feature=share


Oe00LDuJNfs-thumbnail
Tuesday April 18, 2023
Dr. Ismael García Bernete
University of Oxford

Abstract

 

Nowadays, it is widely accepted that most galaxies undergo an active phase in their evolution. The impact of the energy released by active galactic nuclei (AGN) in the interstellar medium (ISM) of the host galaxy has been proposed as a key mechanism responsible for regulating star formation (SF). The mid-infrared (IR) is the ideal spectral range to investigate the nuclear/circumnuclear regions of AGN since dust extinction is significantly lower compared to the visible range. Furthermore, it provides unique tracers to study the AGN-SF connection such as H2 rotational lines, fine structure lines and Polycyclic Aromatic Hydrocarbons (PAHs). PAHs are also a powerful tool to characterize the ISM in different environments.

Recently, we presented new JWST/MIRI MRS spectroscopy of three Seyfert AGN in which we compare their nuclear PAH emission with that of star-forming regions. This study represents the first of its kind to use sub-arcsecond angular resolution data of local luminous Seyferts (Lbol > 10^44.5 erg/s) with a wide wavelength coverage (4.9-28.1 μm). Our results showed that a suite of PAH features is present in the innermost parts of these Seyfert galaxies. We found that the nuclear regions of AGN lie at different positions of the PAH diagnostic diagrams, whereas the SF regions are concentrated around the average values of SF galaxies. Furthermore, we find that the nuclear PAH emission mainly originates in neutral PAHs while, in contrast, PAH emission originating in the star forming regions favours small ionised PAH grains. Therefore, our results provide evidence that the AGN have a significant impact on the ionization state and size of the PAH grains on scales of ~142-245 pc. This is fundamental since PAH bands are routinely used to measure star-formation activity in near and far SF and active galaxies.

Finally, I will summarise our ongoing JWST work within the GATOS (Galactic Activity, Torus and Outflow Survey) collaboration. In particular, I will focus on our recent study about the survival of PAH molecules in AGN-driven outflows.


s5MlCz-9MFk-thumbnail
Thursday April 13, 2023
Prof. Jocelyn Bell
Oxford University

Abstract


1q-4CLaYMUA-thumbnail
Tuesday March 28, 2023
Drs. Rita Tojeiro
University of St. Andrew

Abstract

Galaxies and the dark matter halos in which they reside are intrinsically connected. That relationship holds information about key processes in galaxy and structure formation. In this talk, I will consider how the galaxy-halo connection depends on position within the cosmic web - the familiar decomposition of large-scale structure in filaments, knots and voids. Simulations demonstrate the various ways in which the cosmic web modulates the growth and dynamics of halos. The extent to which the cosmic web impacts on galaxies is more difficult to establish. For example, galaxies might be sensitive only to the evolution of the host halo, in which case any effect of the cosmic web on galaxies is secondary, and can be inferred from the halo's history. There is evidence, however - from simulations and observations - that the cosmic web also impacts on the evolution of galaxies via the effect it has on the broader gas ecosystem in which they are embedded, as well as through "pre-processing" effects on group scale. So, how should we think of the cosmic web in its role as a transformative agent of galaxies? And what physical processes can we convincingly constrain from observations and simulations? In this talk I highlight recent work that addresses these questions.


4cBJTBClvqc-thumbnail
Thursday March 23, 2023
Dr. Lorenzo Pizzuti
CEICO, Institute of Physics of the Czech Academy of Sciences

Abstract

I present the recent results obtained using the updated version of MG-MAMPOSSt, a code that constrains modified gravity (MG) models viable at cosmological scales using determination of galaxy cluster mass profiles with kinematics and lensing analyses. I will discuss limitations and future developments of this method in view of upcoming imaging and spectroscopic surveys, as well as the possibilities of including X-ray data to break degeneracy among model parameters. Finally I will show preliminary results about the constraints that can be obtained on the inner slope of dark matter profiles when adding the velocity dispersion of the Brightest Central Galaxy (BCG) in the dataset of MG-MAMPOSSt.


qY08kujWVY0-thumbnail
Thursday March 2, 2023
Dr. Carlo Cannarozzo
UNAM

Abstract

 

Early-type galaxies: instructions to build them through mergers
Massive early-type galaxies (ETGs) are "red and dead" systems mainly composed of old and metal-rich stellar populations. In a cosmological context, present-day ETGs are believed to be the remnants of a complex stellar mass assembly history marked by several mergers, which are the consequence of the underlying hierarchical assembly of their host dark matter halos. In this talk, I will deal mainly with the merger-driven evolution of ETGs. Firstly, I will illustrate a comparison between observed ETGs from the MaNGA survey and simulated galaxies from the IllustrisTNG cosmological simulation suite. The aim of this study is to provide an interpretative scenario of the stellar mass assembly history of observed present-day ETGs, comparing the radial distributions of their stellar properties with those of simulated galaxies, in which it is possible to disentangle the contribution of stars formed in situ (i.e. within the main progenitor galaxy) and stars formed ex situ (i.e. in other galaxies) and then accreted through mergers. Then, I will describe how the scaling relation between the stellar mass and stellar velocity dispersion in ETGs evolves across cosmic time. Specifically, by extending the results of Cannnarozzo, Sonnenfeld & Nipoti (2020), I model the aforementioned relation through a Bayesian hierarchical approach, considering ETGs with log(M∗/M⊙) > 9 over the redshift range 0 ≲ z ≲ 4. Together with a new characterisation of the relation, I reconstruct the back-in-time evolutionary pathways of individual ETGs on the stellar mass-velocity dispersion plane to answer the question “how did high-redshift ETGs assemble through cosmic time to reach the functional form of the relation in the present-day Universe?“.
After the main topic, if time permits, I would like to spend a few minutes presenting another extra content (below you can find the title and a brief abstract of this further content). Feel free to include it or not in the announcement mail.
EXTRA - Inferring the Dark Matter halo mass in galaxies from other observables with Machine Learning
In the context of the galaxy-halo connection, it is widely known that the Dark Matter (DM) halos show correlations with some physical properties of the hosted galaxy: the most well-known relation is the so-called Stellar-to-Halo-Mass Relation. However, we know that there are several other empirical relations among galaxy properties, involving, for example, the stellar mass, the gas and stellar metallicities, the black hole mass, etc. Given the complexity of the problem and the high number of galaxy properties that might be related to DM halos, the study of the galaxy-halo connection can be approached by relying on machine learning techniques to shed light on this intricate network of relations. With the aim of inferring the DM halo mass and then finding a unique functional form able to link the halo mass to other observables in real galaxies, I rely on the state-of-the-art Explainable Boosting Machine, a novel implementation of generalised additive models with pairwise interactions, training a model on the IllustrisTNG simulation suite at different redshift.

 

 

 

Youtube933518


B1zMqEYV0GQ-thumbnail
Thursday February 23, 2023
Prof. Mauro D'Onofrio
University of Padova

Abstract

I present a detailed analysis of the scaling relations of ETGs and suggest a way to predict the evolution of the distributions of galaxies in these planes. This new approach is able to account of several features observed in the FP projections and of the tilt of the Fundamental Plane.

 


tbIV5eObm5M-thumbnail
Friday January 27, 2023
Prof. Belén Gavela
IFT/UAM

Abstract

 

 After introducing the concepts of axions and axion-like-particles (ALPs) and their signals, true axions which can be either much heavier or much
lighter than the canonical axion will be discussed. The implications for dark matter, neutron stars and gravitational waves searches will  also be addressed.

 

 


« Newer 1 | 2 | 3 | 4 Last >>