Found 13 talks width keyword stellar dynamics

Tuesday September 20, 2022
Dr. Asif ud-Doula
Penn State University


Massive stars (at least eight times as massive as the Sun) possess strong stellar winds driven by radiation. With the advent of the so called MiMeS collaboration, an increasing number of these massive stars have been confirmed to have global magnetic fields. Such magnetic fields can have significant influence on the dynamics of these stellar winds which are strongly ionized. Such interaction of the wind and magnetic field can generate copious amount of X-rays, they can spin the star down, they can also help form large scale disk-like structures. In this presentation I will discuss the nature of such radiatively-driven winds and how they interact with magnetic fields.

Thursday May 12, 2022
Dr. Eugene Vasiliev
IoA Cambridges


I discuss the dynamical interactions between the Milky Way and its satellite galaxies, focusing on the closest and most massive satellites - the Large Magellanic Cloud (LMC) and the Sagittarius dwarf galaxy. The former just has had its first close encounter with the Milky Way very recently, and the latter has been orbiting our Galaxy for several Gyr and is tidally disrupting, leaving a prominent tidal stream spanning the entire sky. Thanks to the abundant and precise observational data from the Gaia satellite and various spectroscopic surveys, we now have a very detailed view of the Sagittarius stream and the remnant. It appears that to reproduce its observed properties, one needs to take into account the gravitational effect of the LMC itself and the effect that it produces on the motion of the Milky Way: an intricate dance of three galaxies. The LMC also affects the motion of other streams and satellite galaxies in the outskirts of the Milky Way, and I discuss an approach for compensating these perturbations in the context of dynamical modelling of the Milky Way mass distribution and the analysis of satellite orbits.

Thursday January 27, 2022
Prof. Axel Brandenburg
Nordita (Sweden)


Following Cowling's anti-dynamo theorem of 1933, there was a long period during which the very existence of dynamos was unclear. Even with the emergence of three dimensional simulations in the late 1980s, people were careful to distinguish true dynamos from just some sort of amplification. Meanwhile, we know of many examples of true dynamos - not only from simulations, but also from several laboratory experiments. Nevertheless, there are still problems, fundamental ones and also very practical ones. After all, we are really not sure how the solar dynamo works. Today, global three-dimensional simulations seem to have an easier time to reproduce the behaviors of superactive stars, but not really the group of inactive stars, to which also the Sun belongs. The Sun itself may actually be special; it has so well defined cycles and it is at the brink of becoming very different. Theoretically, slightly slower rotators should have antisolar rotation, but it is possible that some of those stars never become that slow if stellar breaking ceases for some reason. Sun and starspots are very evident indicators of solar and stellar activity. Their formation is also not well understood. Polarimetry reveals their magnetic helicity, which can be detected even with the solar wind.

Tuesday January 25, 2022
Drs. Sarah Martell
Australian National University


The field of Galactic archaeology has been very active in recent years, with a major influx of data from the Gaia satellite and large spectroscopic surveys. The major science questions in the field include Galactic structure and dynamics, the accretion history of the Milky Way, chemical tagging, and age-abundance relations. I will give an overview of GALAH as a large spectroscopic survey, and describe how it is complementary to other ongoing and future survey projects. I will also discuss recent science highlights from the GALAH team and compelling questions for future work.

Tuesday November 23, 2021
Dr. Dainis Dravins
Lund Observatory (Sweden)


The new generation of spectrometers designed for extreme precision radial velocities enable correspondingly precise stellar spectroscopy. It is now fruitful to theoretically explore what the information content would be if stellar spectra could be studied with spectral resolutions of a million or more, and to deduce what signatures remain at lower resolutions. Hydrodynamic models of stellar photospheres predict how line profiles shapes, asymmetries, and convective wavelength shifts vary from disk center to limb. Corresponding high-resolution spectroscopy across spatially resolved stellar disks is now practical using differential observations during exoplanet transits, thus enabling the testing of such models. A most demanding task is to understand and to model spectral microvariability toward the radial-velocity detection of also low-mass planets in Earth-like orbits around solar-type stars. Observations of the Sun-as-a-star with extreme precision spectrometers now permit searches for spectral-line modulations on the level of a part in a thousand or less, feasible to test against hydrodynamic models of various solar features.

Tuesday June 8, 2021
Dr. Hector Socas-Navarro


In this talk I'll present results from a recent paper in which we have developed a new analysis technique for solar spectra based on artificial neural networks. Our first test applications yielded some unexpected and interesting results. The fine-scale network of temperature enhancements in the quiet middle and upper photosphere have a reversed pattern. Hot pixels in the middle photosphere, possibly associated with small-scale magnetic elements, appear cool at higher levels (log(tau)=-3 and -4), and vice versa. We also find hot arcs on the limb side of magnetic pores, which we interpret as the first direct observational evidence of the "hot wall" effect. Hot walls are a prediction of theoretical models from the 1970s which had not been observed until now.

Thursday May 20, 2021
Dr. Guillaume Thomas


At present, our understanding of the formation history of the MW is limited due to the complexity of observing the imprints of accretion events and of reproducing them in numerical simulations. Moreover, though being the only galaxy, in which the Galactic potential can be probed in detail, the distribution of mass in the MW, and hence of the dark matter, is poorly constraint, especially at large distances. In addition, the MW is not isolated, and it has recently been suggested that the infall of the LMC can induce a perturbation in the stellar and dark matter distribution of the MW. As a consequence, the details of the formation history of our Galaxy are still unknown, such as the number of accretion events, the mass of the accreted galaxies, and the epoch of these events. Yet this information is crucial to understand our environment and to constrain the theoretical models and simulations that try to reproduce it.

One of the major challenges of the field is that a tremendous number of multi-aspect (astrometric, photometric and spectroscopic) observations at significant depth is required to study the morphology, the kinematics and the chemistry of the outskirts of our Galaxy, where are located the signatures of these events. Hopefully, the advent of recent and incoming complementary large surveys, such as the European Gaia mission, UNIONS (Ultraviolet Near Infrared Optical Northern Survey), Pristine, Pan-STARRS (PS), WEAVE or LSST (Legacy Survey of Space and Time), is offering a new global point of view on our Galaxy’s halo, allowing us to precisely probe the Galactic potential our the MW, and to retrace itsaccretion history.

In this talk I will present recent works that have been conducted to better catarerized our Galaxy and its history with some of the existing surveys mentioned above. In addition, I will present the major improvement that will bring this new generation of large, multi-aspect surveys, to study both our Galactic history, as well as the fundamental nature of the dark matter.

Tuesday May 18, 2021
Prof. ºAke Nordlund
Niels Bohr Institute, University of Copenhaguen


(This seminar is organized by the IAU G5 commission on stellar and planetary atmospheres) 

Task-based computing is a method where computational problems are split
   into a large number of semi-independent tasks (cf.
   2018MNRAS.477..624N). The method is a general one, with application not
   limited to traditional grid-based simulations; it can be applied with
   advantages also to particle-based and hybrid simulations, which involve
   both particles and fields. The main advantages emerge when doing
   simulations of very complex and / or multi-scale systems, where the
   cost of updating is very unevenly distributed in space, with perhaps
   large volumes with very low update cost and small but important regions
   with large update costs.

   Possible applications in the context of stellar atmospheres include
   modelling that covers large scales, such as whole active regions on the
   Sun or even the entire Sun, while at the same time allows resolving
   small-scale details in the photosphere, chromosphere, and corona. In
   the context of planetary atmospheres, models of pebble-accreting hot
   primordial atmospheres that cover all scales, from the surfaces of
   Mars- and Earth-size embryos to the scale heights of the surrounding
   protoplanetary disks, have already been computed (2018MNRAS.479.5136P,
   2019MNRAS.482L.107P), and one can envision a number of applications
   where the task-based computing advantage is leveraged, for example to
   selectively do the detailed chemistry necessary to treat atmospheres
   saturated with evaporated solids, or to do complex cloud chemistry
   combined with 3-D radiative transfer.

   In the talk I will give a quick overview of the principles behind
   task-based computing, and then use both already published and still
   on-going work to illustrate how this may be used in practice. I will
   finish by discussing how these methods could be applied with great
   advantage to problems such as non-equilibrium ionization, non-LTE
   radiative transfer, and partial redistribution diagnostics of spectral

Wednesday March 26, 2014
Dr. Thorsten Lisker
Astronomisches Rechen-Institut (ARI), Heidelberg


Dwarf galaxies are a complex population. They comprise objects with young and old stellar populations, slow and fast rotation, as well as single- and multi-component structure. These characteristics show correlations with environmental density - we thus believe that dwarf galaxies hold a fossil record of how environment affected galaxy evolution. In this talk I will review and discuss recent progress on our understanding of dwarf galaxies in clusters, both from the observational and the modelling side. In particular, I will attempt to reconcile the proposed formation mechanisms of early-type dwarf galaxies - the most abundant population in clusters - with the continuous environmental influence predicted by cosmological simulations.

Thursday November 4, 2010
Dr. Felix Mirabel
CEA, Service d'Astrophysique, France


The so called "dark ages" of the universe began about 400.000 years after the Big Bang as matter cooled down and space became filled with neutral hydrogen for hundreds of millions years. How the Universe was heated and reionized during the first billion years after the Big Bang is a question of topical interest in cosmology. I will show that current theoretical models on the formation and collapse of primordial stars suggest that a large fraction of massive stars should have imploded, forming high-mass black hole X-ray binaries. Then, I will review the recent observations of compact stellar remnants in the near and distant universe that support this theoretical expectation, showing that the thermal (UV and soft X-rays) and non-thermal (hard X-rays, winds and jets) emission from a large population of stellar black holes in high mass binaries heated the intergalactic medium over large volumes of space, complementing the reionization by their stellar progenitors. Feedback from accreting stellar black holes at that epoch would have prevented the formation of the large quantities of low mass dwarf galaxies that are predicted by the cold dark matter model of the universe. A large population of black hole binaries may be important for future observations of gravitational waves as well as for the existing and future atomic hydrogen radio surveys of HI in the early universe.

« Newer 1 | 2 Last >>