Found 20 talks width keyword large-scale structure

Video
Monday July 18, 2011
Dr. José Alberto Rubiño
Instituto de Astrofísica de Canarias, Spain

Abstract

This is the first talk of a series of four aimed to discuss about Cosmology. Here, I will review the basic concepts of the standard cosmological model, which will be further discussed in the following talks, as well as the observational evidence in support of the Lambda-CDM model. As the subject is very broad, I will focus the discussion on topics related with inflation, dark matter and dark energy. Moreover, I will mainly discuss large scale structure probes.


Video
Thursday April 14, 2011
Prof. David Schlegel
Lawrence Berkeley National Laboratory, USA

Abstract

The Baryon Oscillation Spectroscopic Survey (BOSS) is a Stage III dark energy experiment on the Sloan Telescope. For the five years from 2009-2014, we are mapping 1.5 million galaxies at z<0.7. A simultaneous survey of 160,000 QSOs is mapping the hydrogen gas in absorption at redshifts 2 < z < 3. BOSS will provide the definitive measurement of the low redshift (z<0.7) BAO distance scale, and it will pioneer a powerful new method of measuring BAO at high redshift. BigBOSS is a proposed Stage IV dark energy experiment that will extend this map to 20 million galaxies over 14,000 deg2 to z=1.7. I will describe this survey and its technical status.


Video
Thursday January 27, 2011
Prof. Tom Abel
Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, USA

Abstract

This lecture will address recent progress in modeling the emergence of cosmic structure at high redshifts. Also new insights gained from numerical simulations into the processes relevant for star formation are presented. Rapid magnetic field growth in galaxies and the important role of proto-stellar outflows regulating star formation up to pc scales are particularly highlighted.


Video
Thursday January 20, 2011
Mr. Fabio Zandanel
Instituto de Astrofísica de Andalucía, CSIC, Spain

Abstract

Clusters of galaxies are expected to contain substantial population of cosmic-rays that can yield a significant high energy emission. Moreover, as they are heavily dark matter dominated, they must be considered prime targets for gamma-ray searches for WIMP decay or annihilation. I will present dark matter gamma-ray all-sky simulated Fermi maps of the Local Universe. The dark matter distribution is obtained from a constrained cosmological simulation provided by the CLUES project. I will discuss the possibility for the Fermi-LAT instrument to detect a dark matter gamma-ray signal in extragalactic structures, mainly nearby clusters, in a 5-year all-sky survey and discuss our on work in progress on cosmic-rays. We are also promoting a campaign of observation of the Perseus galaxy cluster with the MAGIC telescopes. Deep observations of nearby clusters with ground-based instruments are crucial to investigate the nature of dark matter as well as the possible gamma-ray emission coming from cosmic-ray acceleration in these environments.

Video
Friday December 3, 2010
Dr. Miguel Ángel Sánchez Conde
Instituto de Astrofísica de Canarias, Spain

Abstract

The distribution of matter in galaxies of different luminosities and Hubble types, as inferred from observations, plays an important role in cosmology, extragalactic astrophysics, astroparticle physics, as well as in a number of issues in high-energy astrophysics, galactic astronomy, star formation and evolution and general relativity. Not withstanding the general successes of the ΛCDM model in explaining the structure and evolution of the universe, there is a growing conviction that the structural properties of the dark and luminous components in galaxies hold important clues about the nature of dark matter and about the processes that are responsible for galaxy formation. This talk is part of an international initiative known as "Dark Matter Awareness Week".The overall purpose of this event is to increase the awareness of the phenomenology of the mass discrepancy phenomenon in galaxies amongst the many scientists currently working with a theoretical, observational, experimental and simulation approach on issues involving dark matter or its alternatives. The content of the talk will be at the level of a journal club talk with an important dose of review.


Video
Monday October 4, 2010
Prof. João Magueijo
Imperial College London, UK

Abstract

Contrary to popular belief, on very large distance scales visible matter stubbornly refuses to "fall" according to the laws of gravity of both Newton and Einstein. The paradox has led to the introduction of dark matter, purporting to explain the observed surplus of gravitational pull. The logical possibility remains that there is no dark matter, what you see is all there is, and that the paradox simply signals the break down of the Einstein-Newton theory of gravity. I will review alternative theories of gravity that do away with the need for dark matter. Surprisingly Solar system gravitational experiments, such as those associated with the LISA Pathfinder mission, might settle the score between the two approaches.

Video
Monday March 22, 2010
Prof. Richard McMahon
Institute of Astronomy, University of Cambridge, UK

Abstract

Survey operations with the VISTA telescope with it wide field near IR camera started in Feb 2010, following a science verification phase that started in Oct, 2009. I will describe this new 4.2m wide field telescope and the ESO VISTA Public survey program. I will give details of all ESO six public surveys which will be used for a range of galactic and extragalactic science. I am the PI of the largest, by area, VISTA survey, I will focus my talk on the VISTA Hemisphere Survey and I will show how this survey will be used to find quasars in the Epoch of Reionization at redshift greater than 7. The VISTA Hemisphere Survey (VHS) has been been awarded 300 clear nights on the 4.2m ESO VISTA telescopes. VHS observations started i February, 2010 and the survey will take 5 years to complete. The VHS will cover the whole southern celestial hemisphere (dec<0) to a depth 4 magnitudes fainter than 2MASS/DENIS in at least two wavebands J and K. In the South Galactic Cap, 5000 square degrees will be imaged deeper, including H band, and will have supplemental deep multi-band grizY imaging data provided by the Dark Energy Survey (DES). The remainder of the high galactic latitude sky will be imaged in YJHK and combined with ugriz wavebands from the VST ATLAS, SDSS BOSS and Skymapper optical surveys. The medium term scientific goals include: a huge expansion in our knowledge of the lowest-mass and nearest stars; deciphering the merger history and genesis of our own Galaxy; measurement of large-scale structure out to z=1 and measuring the properties of Dark Energy; discovery of the first quasars with z > 7. In my talk, I will describe the scientific motivation and methodology of the search for quasars with z > 7.

Video
Thursday March 12, 2009
Dr. Nick Scoville
California Institute of Technology, USA

Abstract

The COSMOS survey is the largest high redshift galaxy evolution survey ever done -- imaging 2 square degrees with all major space-based and ground based observatories. I will describe the key data in the survey and then present recent results on large-scale structures, the dark matter distributions and galaxy evolution.

Video
Wednesday January 28, 2009
Dr. Francesco Sylos Labini
Institute for Complex Systems, CNR, Italy

Abstract

The Sloan Digital Sky Survey is currently the largest spectroscopic survey of extragalactic objects and one of the most ambitious observational programs ever undertaken in astronomy, measuring about 1 million redshifts and thus providing a three dimensional mapping of the local universe up to a depth of several hundreds of Mpc. The main characteristic of galaxy distribution in this survey, and in the Two degree Field Galaxy redshift Survey completed few years ago, is that large scale structures have been found to extend to scales of the order of hundreds of mega parsecs. However the standard determination of a characteristic length scale, statistically describing galaxy correlations, is of only few mega parsecs: the standard explanation of this apparent mismatch is that large scale structures have small amplitude relative to the average density. We show that, in the newest galaxy samples, large scale structures are quite typical and correspond to large fluctuation in the galaxy density field, making the standard interpretation untenable. We show that the standard statistical analysis is affected by systematics which are due to inconsistent assumptions. We point out that standard theoretical models of structure formation are unable to explain the existence of the large fluctuations in the galaxy density field detected in these samples. This conclusion is reached in two ways: by considering the scale, determined by a linear perturbation analysis of a self-gravitating fluid, below which large fluctuations are expected in standard models and through the determination of statistical properties of mock galaxy catalogs generated from cosmological N-body simulations. Finally we discuss the implications of this results in relation to recent attempts to describe inhomogeneous models in general relativity and to the recent discoveries of large scale coherent bulk flows.

Video
Tuesday November 18, 2008
Dr. Carlos Hernández-Monteagudo
Max Planck Institute for Astrophysics, Germany

Abstract

The amount of baryons seen in the local Universe falls short by a factor2-5 if compared to the amount of detected baryons at intermediate (z~2)or high (z~1,100) redshift. This is the so called "missing baryon" problem in Cosmology. Hydrodynamical simulations of the large scale structure predict that most of those missing baryons should be in the form of ionized gas present in slightly overdense regions, at a temperature ranging from 10^5 to 10^7 K, conforming the "Warm Hot Intergalactic Medium" (WHIM). This WHIM would not form stars, and would not emit or absorb either in the IR, optical or UV. However, it should interact with the photons of the Cosmic Microwave Background (CMB) through two different channels: (i) Thompson scattering (where there is no energy exchange) and (ii) Compton scattering (where hot electrons transfer energy to the CMB photons, distorting their black body spectrum). I shall review the status of the search for missing baryons in the context of CMB observations and the currently most favored cosmological model. I shall also outline new methods and prospects for detecting this missing gas with upcoming CMB experiments and address the link between the cosmic baryon problem and the search for (so far undetected) bulk flows at scales of ~10 Mpc/h.

<< First 1 | 2 Older »

Upcoming talks

Featured talks