Found 22 talks width keyword early universe

CGY6j6jo9QE-thumbnail
Thursday September 29, 2022
Dr. Enrico Garaldi
Max Planck Institute for Astrophysics

Abstract

The formation of the first galaxies in the Universe is the new frontier of both galaxy formation and reionization studies. In fact, we will soon directly observe primeval galaxies thanks to the James Webb Space Telescope, and witness the reionization process through 21cm intensity mapping experiments. This unique moment in human history creates a fierce new challenge, i.e. to simultaneously understand in a unique and coherent picture the processes of galaxy formation and reionization, and – crucially – their connection. The latter, in particular, has escaped past numerical efforts. In this talk I will present the first results on this front from an years-long effort geared toward achieving such comprehensive picture, culminated in the Thesan suite of cosmological radiation-magneto-hydrodynamical simulations. I will briefly introduce the features of Thesan, highlighting the successes and failures of its physical model. Thesan produces realistic galaxy populations thanks to state-of-the-art physics, including self-consistent dust production+destruction and radiation transport. I will then show how Thesan can, for the first time, reproduce the connection between IGM and galaxies, as measured from the modulation of the Lyman-alpha flux around galaxies. Finally, I will chart the way forward towards and even deeper understanding of the emergence of the first structures in the Universe.


FRemFV1zZyQ-thumbnail
Tuesday September 13, 2022
Dr. Martín López Corredoira
IAC

Abstract

Cosmological observations (redshifts, cosmic microwave background radiation, abundance of light elements, formation and evolution of galaxies, large-scale structure) find explanations within the standard Lambda-CDM model, although many times after a number of ad hoc corrections. Nevertheless, the expression ‘crisis in cosmology’ stubbornly reverberates in the scientific literature: the higher the precision with which the standard cosmological model tries to fit the data, the greater the number of tensions that arise. Moreover, there are alternative explanations for most of the observations. Therefore, cosmological hypotheses should be very cautiously proposed and even more cautiously received.

There are also sociological and philosophical arguments to support this scepticism. Only the standard model is considered by most professional cosmologists, while the challenges of the most fundamental ideas of modern cosmology are usually neglected. Funding, research positions, prestige, telescope time, publication in top journals, citations, conferences, and other resources are dedicated almost exclusively to standard cosmology. Moreover, religious, philosophical, economic, and political ideologies in a world dominated by anglophone culture also influence the contents of cosmological ideas.


_Y5obUdwKIQ-thumbnail
Tuesday May 25, 2021
Drs. Olga Mena
IFIC

Abstract

In this talk, we shall review the impact of the neutrino properties on the different cosmological observables. We shall also present the latest cosmological constraints on the neutrino masses and on the effective number of relativistic species. Special attention would be devoted to the role of neutrinos in solving the present cosmological tensions.


UyhsRCdQeD8-thumbnail
Tuesday May 11, 2021
Prof. Rodrigo Alonso
Durham University

Abstract

Cosmological and astrophysical experimental data demark a large share of the limits of our knowledge in fundamental physics. I'll review two pieces of evidence of our ignorance: the nature of dark matter and the generation of baryon asymmetry in the universe, together with some of the proposed solutions to each. Finally, a novel connection between the two open problems will be presented.


ztrgM_m5L5I-thumbnail
Tuesday April 12, 2016
Prof. Ruggero Stanga
Universidad de Florencia y Observatorio de Arcetri

Abstract

A discussion of the first observation ever of gravitational waves. Present detectors, future detectors, and the perspectives for gravitational wave astronomy.


64IxGxJHpXY-thumbnail
Wednesday November 26, 2014
Dr. Ariel Sánchez
Max Planck Institute For Extraterrestrial Physics (Germany)

Abstract

Driven by the potential of large-scale structure (LSS) observations to shed light on the physics behind the accelerated expansion of the Universe, several ground-breaking galaxy surveys are currently under way. These surveys will measure the LSS of the Universe with unprecedented precision, providing new insights not only on the origin of cosmic acceleration, but also on many other important physical parameters. The ongoing Baryon Oscillation Spectroscopic Survey (BOSS) is an example of these new surveys. In this talk I review our theoretical understanding of LSS and the details of the analysis of these measurements. I also describe the cosmological implications of the latest clustering measurements from BOSS, with an emphasis on the problem of understanding cosmic acceleration.


XlUIbevKhU0-thumbnail
Thursday April 10, 2014
Dr. Andreas Pawlik
MPA (Garching)

Abstract

The first galaxies are thought to have started the reionization of the Universe, that is the transformation of the cosmic hydrogen from its initial neutral to its present ionized state that occurred during the first few hundred million years after the Big Bang. I will review the key physics of reionization by the first galaxies and highlight the computational challenges of simulating the relevant processes, primarily the transport of ionizing photons. I will introduce the radiative transfer method TRAPHIC that we have developed to address these challenges. I will discuss the application of TRAPHIC in zoomed cosmological simulations of the first galaxies and evaluate the prospects for observing these galaxies with the upcoming James Webb Space Telescope. I will conclude by presenting first results from Aurora, a new suite of simulations to investigate reionization and galaxy formation across a large range of scales.


8ysdNH3CbtY-thumbnail
Thursday February 13, 2014
Dr. Barry F. Madore
Carnegie Observatory

Abstract

Twenty years ago, no one convincingly knew the age or the size of the
Universe to within a factor of two. Ten years ago, everyone agreed on
those same two numbers to within 10%. Today, we arguably have brought
the errors down by another factor of two. But that has led to anxiety
rather than euphoria, renewed interest rather than complacency. The
problem is that there are now two independent, competing methods
giving answers of comparable precision and accuracy:
one is a model-based method using the cosmic microwave background
(the CMB), the other is a geometric, parallax-based method using local
measures of distances and expansion velocities. To within about
two-sigma the methods agree.  To within about two-sigma the methods
disagree. And basic physics (a fourth neutrino species, perhaps) hangs
in the balance.

I will discuss how this "tension" arose and how it will soon be
relieved.  A tie-breaker has been identified and developed, and it is
now being worked on from the ground and from space.


NYrb88l7Fw8-thumbnail
Thursday July 5, 2012
Dr. Ignacio Ferreras
University College of London

Abstract

Massive early-type galaxies constitute an ideal test bed to probe our understanding of galaxy formation and evolution. Their high mass, spheroidal morphology and overly old stellar populations, along with their presence over a wide range of redshifts put to the test our current paradigm of formation via hierarchical growth. In this talk I will review recent work focused on the dark and bright sides of this problem. The former is tackled via gravitational lensing, comparing the dark matter and luminous components out to several effective radii, probing the efficiency of baryon collapse and ejection, and its feedback on the dark matter distribution (adiabatic compression). The bright side of early-type galaxies is approached via photo-spectroscopic analyses of the stellar populations, revealing a complex formation and assembly history with two well-defined phases of growth, and an intriguing connection with the "microphysics" of star formation.


5g279Sh81UE-thumbnail
Thursday February 16, 2012
Dr. Daniel Eisenstein
SLOAN Digital Sky Survey, CfA Harvard, USA

Abstract

I will discuss how the acoustic oscillations that propagate in the photon-baryon fluid during the first million years of the Universe provide a robust method for measuring the cosmological distance scale. The distance that the sound can travel can be computed to high precision and creates a signature in the late-time clustering of matter that serves as a standard ruler. Galaxy clustering results from the Sloan Digital Sky Survey reveal this feature, giving a geometric distance to a redshift of 0.3 and an accurate measurement of Omega_matter. I will review our recent work on the theory and practice of the acoustic oscillation method and our latest cosmology results from SDSS-II. I will then present SDSS-III, which will use the acoustic method to produce 1% distance measurements in order to map the curvature and expansion history of the Universe and measure the evolution of dark energy.


« Newer 1 | 2 | 3 Last >>