Found 16 talks width keyword supermassive black hole, SMBH

Tuesday April 18, 2023
Dr. Ismael García Bernete
University of Oxford



Nowadays, it is widely accepted that most galaxies undergo an active phase in their evolution. The impact of the energy released by active galactic nuclei (AGN) in the interstellar medium (ISM) of the host galaxy has been proposed as a key mechanism responsible for regulating star formation (SF). The mid-infrared (IR) is the ideal spectral range to investigate the nuclear/circumnuclear regions of AGN since dust extinction is significantly lower compared to the visible range. Furthermore, it provides unique tracers to study the AGN-SF connection such as H2 rotational lines, fine structure lines and Polycyclic Aromatic Hydrocarbons (PAHs). PAHs are also a powerful tool to characterize the ISM in different environments.

Recently, we presented new JWST/MIRI MRS spectroscopy of three Seyfert AGN in which we compare their nuclear PAH emission with that of star-forming regions. This study represents the first of its kind to use sub-arcsecond angular resolution data of local luminous Seyferts (Lbol > 10^44.5 erg/s) with a wide wavelength coverage (4.9-28.1 μm). Our results showed that a suite of PAH features is present in the innermost parts of these Seyfert galaxies. We found that the nuclear regions of AGN lie at different positions of the PAH diagnostic diagrams, whereas the SF regions are concentrated around the average values of SF galaxies. Furthermore, we find that the nuclear PAH emission mainly originates in neutral PAHs while, in contrast, PAH emission originating in the star forming regions favours small ionised PAH grains. Therefore, our results provide evidence that the AGN have a significant impact on the ionization state and size of the PAH grains on scales of ~142-245 pc. This is fundamental since PAH bands are routinely used to measure star-formation activity in near and far SF and active galaxies.

Finally, I will summarise our ongoing JWST work within the GATOS (Galactic Activity, Torus and Outflow Survey) collaboration. In particular, I will focus on our recent study about the survival of PAH molecules in AGN-driven outflows.

Tuesday September 13, 2022
Dr. Martín López Corredoira


Cosmological observations (redshifts, cosmic microwave background radiation, abundance of light elements, formation and evolution of galaxies, large-scale structure) find explanations within the standard Lambda-CDM model, although many times after a number of ad hoc corrections. Nevertheless, the expression ‘crisis in cosmology’ stubbornly reverberates in the scientific literature: the higher the precision with which the standard cosmological model tries to fit the data, the greater the number of tensions that arise. Moreover, there are alternative explanations for most of the observations. Therefore, cosmological hypotheses should be very cautiously proposed and even more cautiously received.

There are also sociological and philosophical arguments to support this scepticism. Only the standard model is considered by most professional cosmologists, while the challenges of the most fundamental ideas of modern cosmology are usually neglected. Funding, research positions, prestige, telescope time, publication in top journals, citations, conferences, and other resources are dedicated almost exclusively to standard cosmology. Moreover, religious, philosophical, economic, and political ideologies in a world dominated by anglophone culture also influence the contents of cosmological ideas.

Thursday July 14, 2022
Dr. Jorge Sanchez-Almeida


With the aim of detecting cosmological gas accretion onto galaxies of the local Universe, we examined the Ha emission in the halo of the 164 galaxies in the field of view of MUSE-Wide (Urrutia+19) with observable Ha (redshift < 0.42).  An exhaustive screening of the Ha images led us to select 118 reliable Ha emitting gas clouds. To our surprise, around 38 % of the time the Ha line profile shows a double peak centered at the rest-frame of the corresponding galaxy. We have explored several physical scenarios to explain this Ha emission, among which accretion disks around rogue  intermediate mass black holes (IMBHs) fit the observations best. I will describe the data analysis (to discard, e.g, instrumental artifacts and high redshift interlopers), the properties of the Ha emitting clumps (their fluxes, peak separation, and spatial distribution with respect to the central galaxy), and the arguments leading to the IMBH hypothesis rather than other alternatives (e.g., cosmological gas, expanding bubbles, or shocks in the circum galactic medium).

Thursday December 2, 2021
Prof. Roberto Maiolino
Kavli Cambridge


In the local universe most of the stellar mass is in passive galaxies, where star formation is
absent or at very low levels. Understanding what are the mechanisms that have been
responsible for quenching star formation in galaxies, and transforming them into passive,
quiescent systems, is one of the main observational and theoretical challenges of extragalactic
astrophysics. I will give a brief overview of the several possible quenching causes and physical
processes that have been proposed so far, ranging from feedback from black hole accretion and
starburst activity, to effects associated with the large scale environment in which galaxies live.
Although most of these mechanisms and causes play a role in different classes of galaxies and
at different epochs, multi-band observations are providing growing evidences that just a few of
them play the key, dominant role.
I will conclude by providing prospects for further investigating these aspects and tackling open
questions with the next generation of observing facilities.

Thursday May 27, 2021
Dr. Manuela Bischetti


This talk will be dedicated to luminous (LBol~1E47 erg/s),
high-redshift quasars, which are ideal targets to investigate (i) feedback
from SMBHs, and (ii) the early growth phases of giant galaxies. I will
present evidence of  SMBH-driven outflows  at all Cosmic epochs, back to
the early Universe. These outflows involve all gas phases (molecular,
neutral, ionised) and extend on nuclear to galactic and circum-galactic
scales. I will report on the first systematic study of the molecular gas
properties in the host-galaxies of the most luminous quasars, fundamental
to probe the impact of SMBH feedback on the host-galaxy evolution. I will
show that luminous quasars pinpoint high-density sites where giant galaxies
assemble, and I will discuss the major contribution of mergers to the final
galaxy mass. To this aim, I will present a wealth of multi-wavelength (UV
to sub-millimeter) observations from the WISE/SDSS hyper-luminous quasars
survey  at z~2-5 (WISSH), and recent results from the ESO large program
XQR-30, the Ultimate X-SHOOTER Legacy Survey of Quasars at the Reionization


Tuesday October 1, 2019
Dr. Omaira González Martín
Instituto de Radioastronomía y Astrofísica, México


The dust component of active galactic nuclei (AGN) produces a broad infrared spectral energy distribution (SED), whose power and shape depends on the fraction of the source absorbed, and the geometry of the absorber respectively. This emitting region is expected to be concentrated within the inner ∼5 pc of the AGN which makes almost impossible to image it with the current instruments. The study of the infrared SED by comparison between infrared AGN spectra and predicted models is one of the few ways to infer the properties of the AGN dust. We explore a set of six dusty models of AGN with available SEDs, namely Fritz et al. (2006), Nenkova et al. (2008B), Hoenig & Kishimoto (2010), Siebenmorgen et al. (2015), Stalevski et al. (2016), and Hoenig & Kishimoto (2017). They cover a wide range of morphologies, dust distributions, and compositions.

We explore the discrimination among models and parameter restriction using synthetic spectra (Gonzalez-Martin et al. 2019A), and perform spectral fitting of a sample of 110 AGN with Spitzer/IRS drawn from the Swift/BAT survey (Gonzalez-Martin et al. 2019B). Our conclusion is that most of these models can be discriminated using only mid-infrared spectroscopy as long as the host galaxy contribution is less than 50%. The best model describing the sample is the clumpy disk-wind model by Hoenig & Kishimoto (2017). However, large residuals are shown irrespective of the model used, indicating that AGN dust is more complex than models. We found that the parameter space covered by models is not completely adequate. This talk will give tips for observers and modelers to actually answer the question: how is the dust arrange in AGN? This question will be one of the main subjects of future research using JWST in the AGN field.

Tuesday January 8, 2019
Dr. Johan Knapen


We present the discovery of a small 0.2'' (60 pc) radius kinematically decoupled core, as well as an outflow jet, in the archetypical AGN-starburst "composite" galaxy NGC 7130 from integral field data obtained with the adaptive optics-assisted MUSE-NFM instrument on the VLT. Correcting the already good natural seeing at the time of our science verification observations with the four-laser GALACSI AO system we reach an unprecedented spatial resolution of around 0.15''. We confirm the existence of star-forming knots arranged in an 0.58'' (185 pc) radius ring around the nucleus, previously observed from UV and optical  Hubble Space Telescope and CO(6-5) ALMA imaging. We determine the position of the nucleus as the location of a peak in gas velocity dispersion. A plume of material extends towards the NE from the nucleus until at least the edge of our FOV at 2'' (640 pc) radius which we interpret as an outflow jet originating in the AGN. The plume is not visible morphologically, but is clearly characterised in our data by emission lines ratios characteristic of AGN emission, enhanced gas velocity dispersion, and distinct non-circular gas velocities. Its orientation is roughly perpendicular to line of nodes of the rotating host galaxy disk. An 0.2''-radius circumnuclear area of positive and negative velocities indicates a tiny inner disk, which can only be seen after combining the integral field spectroscopic capabilities of MUSE with adaptive optics.

Tuesday December 4, 2018
Dr. Chiara Feruglio
INAF Observatory of Trieste


Why did galaxies stop forming stars? Why do black holes in galactic nuclei have masses proportional to bulge masses? What are the physical mechanisms leading the transition from gas-rich, star-forming galaxies, to red gas-deprived passive galaxies? Theoretical models predict that AGN should play a major role in this co-evolution, by driving super winds that are eventually able to remove gas from galaxies, thus quenching star-formation and preventing them from over growing.  
Today’s flagship Instruments - like ALMA and MUSE/VLT - allow to routinely detect AGN-driven massive winds, and to spatially resolve and measure their main parameters. AGN driven galactic winds seem a widespread feature in AGN host galaxies in the local universe, with mounting numbers also in the distant universe.  
But questions arise about their net impact on the surrounding ISM, on the relative importance of quenching versus stimulating star-formation, on the removal of the gas reservoirs from the disks of the host galaxies. 
Do we really understand the interplay of these AGN super-winds with the ISM of the host galaxy, and -perhaps more importantly- with the entire AGN/host galaxy/circum-galactic medium (CGM) ecosystem? I will discuss both observational and theoretical recent results on this topic - and highlight possible strategies to progress. 

Tuesday July 30, 2013
Dr. Ezequiel Treister
Universidad de Concepción


It is now clear that supermassive black holes (M>1e6 Msun) live in the center of most (all) galaxies, including our own Milky Way. Furthermore, the energy released during the growth of this black hole is a critical ingredient in understanding galaxy formation and evolution. In this talk, I will show what we know about how, when and where these supermassive black holes are acquiring their masses. In particular, I will focus on the effects of obscuration, as it is now clear that the majority of this black hole growth is hidden from our view by large amounts of gas and dust. I will present statistical evidence suggesting that while most nuclear activity is triggered by internal secular processes, the most violent episodes are linked to major galaxy mergers. Finally, I will show how future data obtained combining observations with the ALMA radio telescope and the NuSTAR X-ray observatory will allow us to understand the physical details of the connection between black hole growth and galaxy evolution.

Thursday April 26, 2012
Prof. Luis C. Ho
The Observatories of the Carnegie Institution for Science, USA


Supermassive black holes are ubiquitous in galaxies and play a fundamental role in their life cycle. I will review observational progress in defining and refining the various empirical scaling relations between black hole masses and host galaxy properties. I will emphasize ways in which the intrinsic scatter of the scaling relations can be quantified, and present evidence that the scatter correlates with physical properties. I will describe how the scaling relations can be extended to active galaxies and summarize preliminary efforts to probe the evolution of these scaling relations with redshift. I will present new measurements of the cold ISM content in AGN host galaxies and constraints they place on currently popular models of AGN feedback. Lastly, I will discuss a new class of low-mass black holes in bulgeless and dwarf galaxies that serve as local analogs of seed supermassive black holes.

« Newer 1 | 2 Last >>

Upcoming talks

More upcoming talks

Recent Colloquia

Recent Talks