Found 5 talks width keyword galactic halos

OvamlfZ7wm0-thumbnail
Monday June 29, 2015
Dr. Nathalie Ouellette
Queen's University

Abstract

Major tests of cosmological and galaxy formation models can be constructed through dynamical and structural parameters of galaxies. Towards this end, we present the SHIVir (Spectroscopic and H-band Imaging of Virgo cluster galaxies) survey, which provides dynamical information and stellar population diagnostics for hundreds of galaxies. We construct scaling relations and dynamical profiles within the optical radius of most galaxies, paying close attention to the baryon-to-dark matter transition region and selected metrics which reduce scatter in fundamental scaling relations. Salient results include bimodal mass and surface brightness distributions for Virgo galaxies, a possible bifurcation in the stellar-to-halo mass relation for low-mass galaxies, and the need for deep velocity dispersions to extract meaningful science. Once complete, ours should be the most extensive mass catalogue ever assembled for a galaxy cluster.


VYDRxNLMuZQ-thumbnail
Thursday October 10, 2013
Dr. Alberto Molino
IAA

Abstract

The ALHAMBRA (Advance Large Homogeneous Area Medium Band Redshift Astronomical; Moles et al. 2008) survey has observed 8 different regions of the sky, including sections of the COSMOS, DEEP2, ELAIS, GOODS-N, SDSS and Groth fields using a new photometric system with 20 contiguous, ~300A width, filters covering the optical range, plus deep JHKs imaging. The observations, carried out with the Calar Alto 3.5m telescope using the wide field (0.25 deg2 FOV) optical camera LAICA and the NIR instrument Omega-2000, correspond to ~700hrs of on-target science images. The photometric system was specifically designed to maximize the effective depth of the survey in terms of accurate spectral-type and photometric redshift estimation along with the capability of identification of relatively faint emission lines.

The ALHAMBRA Gold catalogue corresponds to a subsample of ~100k bright galaxies (+20.000 stars in the galactic halo and ~1000 AGN candidates), photometrically complete down to magnitude I=23AB, with very accurate and reliable photometric redshift estimations.

Considering that the Spanish community will have privileged access to the data until Nov15th 2013, this seminar is intended to be a brief introduction to the potential (doable) science with the ALHAMBRA-survey.


jz7aupE-6ws-thumbnail
Thursday April 12, 2012
Dr. Lodovico Coccato

Abstract

Stellar halos of galaxies offer an important laboratory to understand the galaxies’ formation process and evolution. In fact, the dynamic time scale in the halos are large, and the imprint of the formation mechanisms may still be preserved at large radii in the kinematics, in the orbital structure, in streams and substructures, or in the chemical composition and distribution of stars.

I will discuss i) the kinematic and dynamical properties of stellar halos in early type galaxies as derived from tracers like planetary nebulae and globular clusters; and ii) the stellar population properties as derived from deep long-slit spectra in a number of massive ellipticals. Results are then discussed in the framework of galaxy halo formation mechanisms.


T8K_ZDwXfoc-thumbnail
Thursday November 13, 2008
Prof. Simon White
Max-Planck Institut für Astrophysik, Garching, Germany

Abstract

In our now-standard picture for the growth of structure, dark matter halos are the basic unit of nonlinear structure in the present Universe. I will report results from simulations of galaxy-scale dark halos with more than an order of magnitude better mass resolution than any previously published work. Tests demonstrate detailed convergence for (sub)structures well below a millionth the mass of the final system. Even with such resolution the fraction of halo mass in bound subhalos does not rise above a few percent within the half-mass radius. I will also present a new simulation technique which allows structure in the dark matter distribution to be studied on very much smaller scales. This is required for accurate forecasts of the expected signal both in earth-bound experiments designed to detect dark matter directly, and in indirect detection experiments like GLAST which attempt to image dark matter annihilation radiation at gamma-ray wavelengths.

OpJMrlCLPdg-thumbnail
Wednesday July 16, 2008
Dr. Gyula Jozsa
Netherlands Institute for Radio Astronomy, the Netherlands

Abstract

Warps of disk galaxies are ubiquitous. In almost every disk galaxy a bending of the disk occurs where the stars fade away and hence where the dark matter halo becomes dominant. A clear understanding of this phenomenon has not been reached yet. Analysing H I observations of a small sample of symmetric, warped disk galaxies we found that they exhibit a two-disk structure, the warp being the transition from the inner flat disk to an outer, inclined one. At the transition radius, the rotation curve changes. This points towards symmetric warps being a long-lived phenomenon reflecting an internal change in the structure of the Dark Matter halo.
While warps usually occur where the stellar disks fade, examples of extreme warps are known that commence already at the centre of galaxies. One is present in the neutral gas disk of the "Spindle Galaxy "NGC 2685, formerly thought of as being a two-ringed polar ring galaxy. Utilising deep HI observations, we found that the two-ringed appearance is due to projection effects and that it rather possesses one coherent,extremely warped HI disk. Our success in fitting a tilted-ring model to the HI component, and, with that, assuming circular orbits of the tracer material, and the shape of the fitted rotation curve hint towards a rather spherical shape of the overall potential.

« Newer Older »