Found 9 talks width keyword galactic classification

e7hTWg6KqdY-thumbnail
Thursday September 25, 2014
Mr. Andreas Hiemer
Univ. of Innsbruck

Abstract

Modern imaging surveys provide a fundamental tool in order to study the morphological
properties of galaxy populations in the nearby and the distant Universe. In order to
process a complete set of survey images, we designed GALAPAGOS-C. GALAPAGOS-C
unifies the detection of sources (via source extractor), postage stamp cutting, object
mask preparation, sky background estimation and complex two-dimensional light profile
Sérsic modeling (via GALFIT) in one automatic program. GALAPAGOS-C is designed
around the concept of MPI-parallelization, allowing the processing of large data sets
in a quick and efficient manner. Further, GALAPAGOS-C is capable of fitting multiple-
Sérsic profiles to each galaxy, each representing distinct galaxy components (e.g. bulge,
disc, bar), in addition to the option to fit asymmetric distortions with a Fourier mode
expansion to the axis-symmetric single-Sérsic isophotes. The modeling reliability of our
core single-Sérsic fitting capability and the optional Fourier mode expansion are tested
thoroughly using image simulations.
GALAPAGOS-C is applied to a sample of 2063 galaxies in the A901/902 galaxy cluster
(z ∼ 0.165) from the Space Telescope A901/902 Galaxy Evolution Survey (STAGES) and
an additional sample of 2876 field galaxies from the Galaxy Evolution From Morphology
And SEDs Survey (GEMS). We measure the distribution of Sérsic indices as a function of
local object density in the A901/902 cluster sample to provide one of the first measures
of the Sérsic index–density relation. In addition, we measure the distribution of lopsided
galaxies in the A901/902 cluster sample and quantify the intensity of lopsidedness in
the galaxies in the field since z ∼ 0.9 in order to study the evolution of lopsidedness as
a function of redshift. In each application, we study the correlations of the measured
parameters with other intrinsic and structural variables, e.g. the stellar mass, the color
or the presence or absence of a disk. Our results provide further clues on the evolution
of galaxy structure with cosmic time and the dependence on environment.


PIgs14fb-ME-thumbnail
Thursday December 5, 2013
Dr. Peter Erwin
MPIE, Garching

Abstract

I will discuss a new, open-source astronomical image-fitting program, specialized for galaxies, which is fast, flexible, and highly extensible. A key characteristic is an object-oriented design which allows new types of image components (2D surface-brightness functions) to be easily written and added to the program. Image functions provided with the program include the usual suspects for galaxy decompositions (Sersic, exponential, Gaussian), along with Core-Sersic and broken-exponential profiles, elliptical rings, and components which perform line-of-sight integration through 3D luminosity-density models of disks and rings seen at arbitrary inclinations. Minimization can be done using the standard chi^2 statistic (using either data or model values to estimate per-pixel errors) or the Cash statistic, which is appropriate for Poisson data in low-count regimes; different minimization algorithms allow trade-offs between speed and decreased sensitivity to local minima in the fit landscape. I will also show that fitting low-S/N galaxy images by minimizing chi^2 can lead to significant biases in fitted parameter values, which are avoided if the Cash statistic is used; this is true even when Gaussian read noise is present.


7MNiFvojtfI-thumbnail
Tuesday December 13, 2011
Dr. Dave Wilman
MPE, Germany

Abstract

The origin of galaxy morphology has to be seen in the context of the hierarchical build up of structure and baryons expected in a CDM Universe. Star formation and structural properties of galaxies are well known to relate to their environment and stellar mass. We quantify the relation between galaxy morphology and both stellar and halo mass. In this talk, we present our sample, and the remarkably different morphological trends for the most massive ("central") and other ("satellite") galaxies in groups. We then interpret these trends both empirically and in the context of purpose-built recipes applied to two independent semi-analytic galaxies of galaxy formation, which account for the full merger history of galaxies.


-thumbnail
Tuesday May 24, 2011
Dr. Jorge Sánchez Almeida
Instituto de Astrofísica de Canarias, Spain

Abstract

We compare the Hubble type and the spectroscopic class of the galaxies with spectra in SDSS/DR7. As it is long known, elliptical galaxies tend to be red whereas spiral galaxies tend to be blue, however, this relationship presents a large scatter, which we measure and quantify in detail. We compare the Automatic Spectroscopic K-means based classification (ASK) with most of the commonly used morphological classifications. All of them provide consistent results. Given a spectral class, the morphological type wavers with a standard deviation between 2 and 3 T types, and the same large dispersion characterizes the variability of spectral classes fixed the morphological type. The distributions of Hubble types given an ASK class are very skewed -- they present long tails that go to the late morphological types for the red galaxies, and to the early morphological types for the blue spectroscopic classes. The scatter is not produced by problems in the classification, and it remains when particular subsets are considered. A considerable fraction of the red galaxies are spirals (40--60 %), but they never present very late Hubble types (Sd or later). Even though red spectra are not associated with ellipticals, most ellipticals do have red spectra: 97 % of the ellipticals in the morphological catalog by Nair & Abraham, used here for reference, belong to ASK 0, 2 or 3. It contains only a 3 % of blue ellipticals. The galaxies in the green valley class (ASK~5) are mostly spirals, and the AGN class (ASK 6) presents a large scatter of Hubble types from E to Sd. We investigate variations with redshift using a volume limited subsample. From redshift 0.25 to now the galaxies redden from ASK 2 to ASK 0, as expected from the passive evolution of their stellar populations. Two of the ASK classes (1 and 4) gather edge-on spirals, and they may be useful in studies requiring knowing the intrinsic shape of a galaxy (e.g., weak lensing calibration).


erb0bxmtTTU-thumbnail
Friday October 29, 2010
Mr. Hugo Messias
Centro de Astronomia e Astrofísica da Universidade de Lisboa, Portugal

Abstract

In this talk, I will cover our contribution to the study of extremely red galaxy (ERG) populations presenting a multi-wavelength analysis of these objects, selected in the GOODS-South/Chandra Deep Field South field. By using all the photometric (from X-rays to radio) and spectroscopic information available on large deep samples of extremely red objects (EROs, 645 sources), infrared EROs (IEROs, 294 sources) and distant red galaxies (DRGs, 350 sources), we derive redshift distributions, identify AGN powered and star-formation powered galaxies (based on X-ray properties and a new IR AGN diagnostic developed by us), and, using the radio observations of this field, estimate robust (AGN- and dust-unbiased) star formation rate densities (SFRD) for these populations. Applying a redshift separation (1 ≤ z < 2 and 2 ≤ z ≤ 3) we find a significant rise (a factor of 1.5 — 3) of SFRD for EROs and DRGs toward high-z, while none is observed for IEROs. As expected, we find a significant overlap between the ERG populations, and investigate the properties of "pure" (galaxies that conform to only one of the three considered ERG criteria) and "combined" (galaxies conforming to all three criteria) sub-populations. We find ERG sub-populations with no AGN activity and intense star-formation rates. With average values of ~180 M⊙/yr at 2 ≤ z < 3, they reasonably contribute to the global star-formation rate density, reaching a > 20% level. Strong AGN behaviour is not observed in the ERG population, with AGN only increasing the average radio luminosity of ERGs by 10 — 20%. However, AGN are frequently found (in up to 27% of the ERG population), and would increase the SFRD estimate by over 100%. Thus, and while the contribution of SF processes to the radio luminosity in galaxies with AGN remains uncertain, a comprehensive identification of AGN in these populations is necessary to obtain meaningful results. The dust content to each population is also derived by correlating UV and Radio SFRs, giving a higher obscuration for more active SF sources. Also, know to be amongst the most massive galaxies in the high-z universe, I will show that ERGs may constitute up to 60% of the total mass in the universe at 1 ≤ z ≤ 3. Finally, preliminary and promising results are presented on the morphologies of ERGs (CAS and Gini/M20 parameters) based on the v1.9 ACS GOODS-S images.

-thumbnail
Tuesday September 21, 2010
Dr. Glenn van de Ven
Max Planck Institute for Astronomy, Heidelberg, Germany

Abstract

Two-dimensional stellar kinematics obtained with the integral-field spectrograph SAURON allow the classification of early-type galaxies into 'slow' and 'fast' rotators, different from their morphological classification into ellipticals and lenticulars. Most fast rotators, including lenticular as well as many elliptical galaxies, are consistent with oblate axisymmetric disk-like systems. On the other hand, the slow-rotator ellipticals show clear deviations from axisymmetry, which can be modeled with our extension of Schwarzschild's orbit superposition method to triaxial geometry. Besides galaxies, I show that Schwarzschild's method can also be used to model in detail globular clusters such as ω Cen and M15. The recovered internal orbital structure of ω Cen reveals besides a signature of tidal interaction, also a central stellar disk, supporting its origin as the nucleus of a stripped dwarf galaxy. The formally best-fit Schwarzschild model for M15 includes an intermediate-mass black hole, but we cannot exclude a model in which dark remnants make up the dark mass in the collapsed core.

KNSjIDa_onA-thumbnail
Thursday June 10, 2010
Dr. Jorge Sánchez Almeida
Instituto de Astrofísica de Canarias, Spain

Abstract

Using the k-means cluster analysis algorithm, we carry out an unsupervised classification of all galaxy spectra in the seventh and final Sloan Digital Sky Survey data release (SDSS/DR7). Except for the shift to rest-frame wavelengths and the normalization to the g-band flux, no manipulation is applied to the original spectra. The algorithm guarantees that galaxies with similar spectra belong to the same class. We find that 99% of the galaxies can be assigned to only 17 major classes, with 11 additional minor classes including the remaining 1%. The classification is not unique since many galaxies appear in between classes; however, our rendering of the algorithm overcomes this weakness with a tool to identify borderline galaxies. Each class is characterized by a template spectrum, which is the average of all the spectra of the galaxies in the class. These low-noise template spectra vary smoothly and continuously along a sequence labeled from 0 to 27, from the reddest class to the bluest class. Our Automatic Spectroscopic K-means-based (ASK) classification separates galaxies in colors, with classes characteristic of the red sequence, the blue cloud, as well as the green valley. When red sequence galaxies and green valley galaxies present emission lines, they are characteristic of active galactic nucleus activity. Blue galaxy classes have emission lines corresponding to star formation regions. We find the expected correlation between spectroscopic class and Hubble type, but this relationship exhibits a high intrinsic scatter. Several potential uses of the ASK classification are identified and sketched, including fast determination of physical properties by interpolation, classes as templates in redshift determinations, and target selection in follow-up works (we find classes of Seyfert galaxies, green valley galaxies, as well as a significant number of outliers). The ASK classification is publicly accessible through various Web sites.


TbTGgmv9Z_k-thumbnail
Monday February 8, 2010
Dr. Roberto Cid Fernandes
Universidade Federal de Santa Catarina, Florianopolis, Brazil

Abstract

This talk is divided into two related parts. First, we will call your attention to a basic, but often overlooked worrying fact, and presents ways of dealing with it. The fact is: an enormous number of galaxies in surveys like the SDSS have emission lines which are too weak (low S/N) to be classified by usual schemes (ie, diagnostic diagrams). It turns out that most of these are AGN-like, so ignoring them on the basis of low S/N (which most people do) leaves as much as 2/3 of these emission line galaxies unaccounted for. The solution: We present a number of alternative methods to rescue this numerous population from the classification limbo. We find that about 1/3 of these weak-line galaxies are massive, metal rich star-forming systems, while the remaining 2/3 are more like LINERs. In the second part, we revisit the old idea by Binette et al (1994) that post-AGB stars can account for the emission line properties of some galaxies. A "retired galaxy" model is presented and compared to data in the SDSS. We find that about 1/4 of the galaxies classified as LINERs in the SDSS are consistent with this model, where all ionizing radiation is of stellar origin. More dramatically, nearly 100% of weak-line LINERs are perfectly consistent with being just retired galaxies, with no active nucleus. If these ideas are correct, contrary to current practice, relatively few LINERs should be counted as bona fide AGN.

AzCG7Mza2EU-thumbnail
Thursday June 11, 2009
Prof. Roger Davies
Department of Physics, University of Oxford, UK

Abstract

The SAURON survey has revised our view of early type galaxies discovering that central disks and multiple kinematic components are common; 75% of the sample have extended ionized gas, often misaligned with the stars; half of S0s and 25% of Es have intermediate age populations. There is a tight relationship between the escape velocity and Mg line strength which holds both within and between galaxies raising uncomfortable questions for hierarchical assembly. Many of the properties of ETGs are related to a measure of their specific angular momentum : slow rotators are triaxial, close to spherical, isotropic and frequently exhibit decoupled central kinematics, whereas fast rotators are intrinsically flatter, oblate, have disk-like (anisotropic) kinematics and often have Mg enhanced disks. In general the slow rotators are more massive and have older populations Only half of the elliptical galaxies exhibit slow rotation, the remainder have stellar disks showing that the historic division by morphological class is physically misleading. We suggest that the contrasting physical properties of fast and slow rotators arise through distinct assembly histories with slow rotators forming in gas free, dry mergers and fast rotators retaining a disk component through a dissipative merger.

« Newer Older »

Upcoming talks


More upcoming talks

Recent Colloquia