Found 44 talks width keyword galactic formation

Tuesday June 11, 2013
Dr. Jorge Sánchez Almeida


The direct accretion of pristine gas streams is predicted to be the main mode of galaxy disk growth in the early universe (cold-flows). We (think we) have discovered this physical process at work in the local Universe. The finding is one of the outcomes of our in-depth study of local extremely metal poor (XMP) galaxies. I will explain the main observational properties of XMPs, in particular, their tendency to have cometary or tadpole morphology, with a bright peripheral clump (the head) on a faint tail. Tadpole galaxies are rare in the nearby universe but turn out to be very common at high redshift, where they are usually interpreted as disk galaxies in early stages of assembling. We have found the heads to be giant HII regions displaced with respect to the rotation center, with the galaxy metallicity being smallest at the head and larger elsewhere. The resulting chemical abundance gradient is opposite to the one observed in local spirals, and suggests a recent gas accretion episode onto the head. Thus, local XMP galaxies seem to be primitive disks, with their star formation sustained by accretion of external metal poor gas. I will argue how the same mechanism may be driving the star formation in many other local galaxies. Ongoing observational projects to confirm these findings and conjectures will be briefly mentioned.

Thursday April 25, 2013
Dr. Ismael Pérez Fournón


How do the first galaxies form and evolve? Optical and near-infrared deep surveys are now finding galaxies at very high redshifts. However, they are typically small, not massive and present some but not very high star formation. But now the Herschel Multi-tiered Extragalactic Survey (HerMES), the largest project that has being carried out with the Herschel Space Observatory, in collaboration with other groups, has discovered a massive, maximum-starburst galaxy at a redshift of 6.34. The presence of galaxies like HFLS3 in the early Universe challenges current theories of galaxy fomation and evolution. I will describe the method we have developed to find these galaxies, the follow-up observations with different facilities and the main physical properties of this extreme object.

Tuesday January 29, 2013
Dr. Jairo Méndez Abreu


The effects that environment produce on galaxy disks and how they modify the subsequent formation of bars need to be distinguished to fully understand the relationship between bars and environment. To shed light on this issue, we derive the bar fraction in three different environments ranging from the field to Virgo and Coma Clusters, covering an unprecedentedly large range of galaxy luminosities (or, equivalently, stellar masses). We confirm that the fraction of barred galaxies strongly depends on galaxy luminosity. We also show that the difference between the bar fraction distributions as a function of galaxy luminosity (and mass) in the field and Coma Cluster is statistically significant, with Virgo being an intermediate case. We interpret this result as a variation of the effect of environment on bar formation depending on galaxy luminosity. We speculate that brighter disk galaxies are stable enough against interactions to keep their cold structure, thus, the interactions are able to trigger bar formation. For fainter galaxies, the interactions become strong enough to heat up the disks inhibiting bar formation and even destroying the disks. Finally, we point out that the controversy regarding whether the bar fraction depends on environment could be resolved by taking into account the different luminosity ranges probed by the galaxy samples studied so far.

Thursday November 8, 2012
Prof. Piet van der Kruit
University Groningen


Disks in spiral galaxies consist of stars and gas. The stellar disks show radially an exponential surface brightness distribution (and vertically one resembling an isothermal sheet), with relatively sharp truncations at of order 4 scalelengths. These truncations are most easily seen in edge-on galaxies. The evidence for these truncations and their statistics will be reviewed. Truncations appear to be not only truncations in the distribution of stars, but also in the total density. The origin of these truncations seem related to the maximum specific angular momentum in the material that formed the disks. Disks are extremely flat. The HI-gas often extends beyond the eructations in the stellar disks, but when they do they also show a warp. Again edge-on galaxies show this mostly readily. Analysis shows that the warps start abruptly, just beyond the truncation radius and some other properties also show abrupt changes at the radius of the onset of the warp. This suggests that warps are the result of infall of gas at later times, when the formation of the stellar disks has been completed. The open issue is still that we have not conclusively shown that we can discover the face-on analogs of the truncations we see in edge-on disk. I will outline some recent research I have been involved in and some ideas for further work and collaborations.

Thursday July 5, 2012
Dr. Ignacio Ferreras
University College of London


Massive early-type galaxies constitute an ideal test bed to probe our understanding of galaxy formation and evolution. Their high mass, spheroidal morphology and overly old stellar populations, along with their presence over a wide range of redshifts put to the test our current paradigm of formation via hierarchical growth. In this talk I will review recent work focused on the dark and bright sides of this problem. The former is tackled via gravitational lensing, comparing the dark matter and luminous components out to several effective radii, probing the efficiency of baryon collapse and ejection, and its feedback on the dark matter distribution (adiabatic compression). The bright side of early-type galaxies is approached via photo-spectroscopic analyses of the stellar populations, revealing a complex formation and assembly history with two well-defined phases of growth, and an intriguing connection with the "microphysics" of star formation.

Thursday April 12, 2012
Dr. Lodovico Coccato


Stellar halos of galaxies offer an important laboratory to understand the galaxies’ formation process and evolution. In fact, the dynamic time scale in the halos are large, and the imprint of the formation mechanisms may still be preserved at large radii in the kinematics, in the orbital structure, in streams and substructures, or in the chemical composition and distribution of stars.

I will discuss i) the kinematic and dynamical properties of stellar halos in early type galaxies as derived from tracers like planetary nebulae and globular clusters; and ii) the stellar population properties as derived from deep long-slit spectra in a number of massive ellipticals. Results are then discussed in the framework of galaxy halo formation mechanisms.

Tuesday September 27, 2011
Dr. Ignacio Trujillo
Instituto de Astrofísica de Canarias, Spain


In the last few years there has been cumulative evidence showing that massive galaxies have dramatically grown in size since z~3. This result has remained very controversial as it seems at odd with our previous knowledge based on the detailed analysis of the stellar populations of nearby massive spheroids which shows that their stars were form very early on and over a short time interval. In addition to this, there is growing observational support for a significant evolution of the morphologies of these galaxies with cosmic time. In this talk, I will summarize what we have learned since the discovery of the strong evolution of the morphological properties of the massive galaxies, the mechanisms proposed to explain their origin and size increase, and the pending questions still to solve.

Monday September 12, 2011
Dr. Marc Balcells
Isaac Newton Group of Telescopes, Spain


The vision for the use of the WHT in the coming decade is taking shape.   A key element is the construction and deployment of WEAVE, a wide-field massive-multiplex spectrograph.  With 1000 fibres and spectral resolutions of 5000 and 20000, the opportunities for discovery are tremendous.  Three key fields will be: Milky-Way and Local Group archaeology linked to the   Gaia mission; cosmology redshift surveys; and galaxy evolution studies linked to photometric surveys such as VISTA, UKIDSS, LOFAR, EUCLID, and  others. IAC has the opportunity to get involved in this important instrument for ORM from the beginning.

Tuesday August 2, 2011
Dr. Carlos González Fernández
University of Alicante, Spain


With the discovery of several massive, young clusters in the last five years, the area around the base of the Scutum-Crux arm (around l=28) has become one of the more intense stellar formation areas in the whole Galaxy. This is not totally unexpected, as it is just there where it was predicted that the long bar of the Milky Way would come into contact with the disk, triggering stellar formation. With this talk we review all these evidences and we bring others into light, as we try to obtain a clearer picture of what is happening in these areas and what does it tell us about the inner structure of the Galaxy, particularly of the bulge+bar complex.

Friday July 29, 2011
Dr. Victor Debattista
University of Central Lancashire, UK


In recent years it has become clear that stars can migrate across large regions of the disk without increasing substantially the velocity
dispersion.  I review the theory and consequences of migration and discuss
some of the evidence supporting the occurrence of stellar migration,  including in the Milky Way's thick disk.

<< First 1 | 2 | 3 | 4 | 5 Last >>

Upcoming talks

Featured talks