Found 67 talks width keyword galaxy evolution

Video
Tuesday May 15, 2012
Dr. Rubén Sánchez Janssen
European Southern Observatory

Abstract

I will address the effects of bar-driven secular evolution in discs by comparing their properties in a sample of nearly 700 barred and unbarred massive galaxies. Through detailed structural decompositions I will show that, as a population, barred discs tend to have fainter central surface brightness and larger disc scale lengths than those of unbarred galaxies. Bars rarely occur in high-surface brightness discs and tend to reside in moderately blue discs. These results show that bars induce noticeable evolution in the structural properties of galaxy discs, in qualitative agreement with longstanding theoretical expectations.


Video
Friday February 24, 2012
Dr. David Sobral
Leiden University, the Netherlands

Abstract

I will present new deep and wide narrow-band surveys undertaken with UKIRT, Subaru and the VLT; a unique combined effort to select large, robust samples of H-alpha (Ha) emitters at z=0.40, 0.84, 1.47 and 2.23 (corresponding to look-back times of 4.2, 7.0, 9.2 and 10.6 Gyrs) in a uniform manner over ~2 sqdeg in the COSMOS and UDS fields. The deep multi-epoch Ha surveys are sensitive to Milky-Way SFRs out to z=2.2 for the first time, while the wide area and the coverage over two independent fields allows to greatly overcome cosmic variance. A total of over 600 sources per epoch are homogeneously selected. Overall, the evolution seen in Ha is in good agreement with the evolution seen using inhomogeneous compilations of other tracers of star formation, such as FIR and UV, jointly pointing towards the bulk of the evolution in the last 11 Gyrs being driven by a strong luminosity/SFR increase from z~0 to z~2.2. Our uniform analysis allows to derive the Ha star formation history of the Universe, for which a simple time-parametrisation is a good approximation for the last 11Gyrs. Both the shape and normalisation of the Ha star formation history are consistent with the measurements of the stellar mass density growth, confirming that our Ha analysis traces the bulk of the formation of stars in the Universe up to z~2.2. We are also exploring the large, multi-epoch and homogeneously selected samples of Ha emitters to conduct detailed morphology, dust, clustering, environment and mass studies which are providing us with a unique view on the evolution of star-forming galaxies and what has been driving it for the past 11 Gyrs.


Video
Tuesday February 14, 2012
Dr. Carsten Weidner
Instituto de Astrofísica de Canarias, Spain

Abstract

Over the past years observations of young and populous star clusters have shown that the stellar initial mass function (IMF) can be conveniently described by a two-part power-law with an exponent alpha2 = 2.3 for stars more massive than about 0.5 Msol and an exponent of alpha1 = 1.3 for less massive stars. A consensus has also emerged that most, if not all, stars form in stellar groups and star clusters, and that the mass function of these can be described as a power-law (the embedded cluster mass function, ECMF) with an exponent beta ~2. These two results imply that the integrated galactic IMF (IGIMF) for early-type stars cannot be a Salpeter power-law, but that they must have a steeper exponent. An application to star-burst galaxies shows that the IGIMF can become top-heavy. This has important consequences for the distribution of stellar remnants and for the chemo-dynamical and photometric evolution of galaxies.


Video
Thursday January 12, 2012
Dr. Javier Alonso-García
Universidad Pontificia de Chile, Chile

Abstract

A serious limitation in the study of the Galactic inner halo and bulge globular clusters has been the existence of large and differential extinction by foreground dust. We have mapped the differential extinction and removed its effects, using a new dereddening technique, in a sample of 25 clusters in the direction of the inner Galaxy, observed in the optical using the Magellan 6.5m telescope and the Hubble Space Telescope. We have also observed a sample of 33 inner Galactic globular clusters in the framework of the VVV survey that is currently being conducted with the new Vista 4m telescope, in infrared bands where the extinction is highly reduced. Using these observations we have produced high quality color-magnitude diagrams of these poorly studied clusters that allow us to determine these clusters relative ages, distances and chemistry more accurately and to address important questions about the formation and the evolution of the inner Galaxy.


Video
Tuesday December 13, 2011
Dr. Dave Wilman
MPE, Germany

Abstract

The origin of galaxy morphology has to be seen in the context of the hierarchical build up of structure and baryons expected in a CDM Universe. Star formation and structural properties of galaxies are well known to relate to their environment and stellar mass. We quantify the relation between galaxy morphology and both stellar and halo mass. In this talk, we present our sample, and the remarkably different morphological trends for the most massive ("central") and other ("satellite") galaxies in groups. We then interpret these trends both empirically and in the context of purpose-built recipes applied to two independent semi-analytic galaxies of galaxy formation, which account for the full merger history of galaxies.


Video
Thursday September 22, 2011
Prof. Joseph Lazio
Jet Propulsion Laboratory, USA

Abstract

The Square Kilometre Array is intended to be the centimeter- and meter-wavelength telescope for the 21st Century. Originally proposed as the "hydrogen telescope," the science case is now recognized to be much broader, and the SKA will address fundamental questions in astrophysics, physics, and astrobiology. The international science community has developed a set of Key Science Programs: (1) Emerging from the Dark Ages and the Epoch of Reionization; (2) Galaxy Evolution, Cosmology, and Dark Energy; (3) The Origin and Evolution of Cosmic Magnetism; (4) Strong Field Tests of Gravity Using Pulsars and Black Holes; and (5) The Cradle of Life & Astrobiology. I highlight how the SKA's Key Science Programs will be an integral component of the multi-wavelength, multi-messenger frontiers for astronomy and how the science pathfinding for the SKA is beginning now.


Video
Monday September 12, 2011
Dr. Marc Balcells
Isaac Newton Group of Telescopes, Spain

Abstract

The vision for the use of the WHT in the coming decade is taking shape.   A key element is the construction and deployment of WEAVE, a wide-field massive-multiplex spectrograph.  With 1000 fibres and spectral resolutions of 5000 and 20000, the opportunities for discovery are tremendous.  Three key fields will be: Milky-Way and Local Group archaeology linked to the   Gaia mission; cosmology redshift surveys; and galaxy evolution studies linked to photometric surveys such as VISTA, UKIDSS, LOFAR, EUCLID, and  others. IAC has the opportunity to get involved in this important instrument for ORM from the beginning.


Video
Tuesday May 24, 2011
Dr. Jorge Sánchez Almeida
Instituto de Astrofísica de Canarias, Spain

Abstract

We compare the Hubble type and the spectroscopic class of the galaxies with spectra in SDSS/DR7. As it is long known, elliptical galaxies tend to be red whereas spiral galaxies tend to be blue, however, this relationship presents a large scatter, which we measure and quantify in detail. We compare the Automatic Spectroscopic K-means based classification (ASK) with most of the commonly used morphological classifications. All of them provide consistent results. Given a spectral class, the morphological type wavers with a standard deviation between 2 and 3 T types, and the same large dispersion characterizes the variability of spectral classes fixed the morphological type. The distributions of Hubble types given an ASK class are very skewed -- they present long tails that go to the late morphological types for the red galaxies, and to the early morphological types for the blue spectroscopic classes. The scatter is not produced by problems in the classification, and it remains when particular subsets are considered. A considerable fraction of the red galaxies are spirals (40--60 %), but they never present very late Hubble types (Sd or later). Even though red spectra are not associated with ellipticals, most ellipticals do have red spectra: 97 % of the ellipticals in the morphological catalog by Nair & Abraham, used here for reference, belong to ASK 0, 2 or 3. It contains only a 3 % of blue ellipticals. The galaxies in the green valley class (ASK~5) are mostly spirals, and the AGN class (ASK 6) presents a large scatter of Hubble types from E to Sd. We investigate variations with redshift using a volume limited subsample. From redshift 0.25 to now the galaxies redden from ASK 2 to ASK 0, as expected from the passive evolution of their stellar populations. Two of the ASK classes (1 and 4) gather edge-on spirals, and they may be useful in studies requiring knowing the intrinsic shape of a galaxy (e.g., weak lensing calibration).


Video
Thursday April 28, 2011
Dr. Alberto Dominguez Diaz
Instituto de Astrofísica de Andalucia, Spain

Abstract

The extragalactic background light (EBL) is of fundamental importance both for understanding the entire process of galaxy evolution and for gamma-ray astronomy, but the overall spectrum of the EBL between 0.1 and 1000 microns has never been determined directly from galaxy spectral energy distribution (SED) observations over a wide redshift range. Galaxy SED-type fractions from z=0.2-1 are estimated from a multi-wavelength sample from the AEGIS collaboration that allows a new determination of the evolving EBL. Then, the transparency of the Universe to very high energy (VHE) gamma-ray photons is derived. We find the maximum transparency of the Universe allowed by the standard framework. This result challenges current VHE observations of high redshift blazars. A solution to this problem is discussed utilizing VHE spectra of the highest redshift blazars assuming the existence of a plausible dark matter candidate known as axion-like particle.


Video
Friday March 25, 2011
Dr. Anne Sansom
University of Central Lancashire, UK

Abstract

Spectroscopic analysis of stellar populations is widely used to understand the history of many systems including globular clusters, nuclear star clusters, dwarf galaxies through to giant galaxies over a wide range of redshifts. In this talk I first explore aspects of stellar population fitting, focussing on the effects of interacting binary stars on the yields and hence the spectra of early-type galaxies. The second part of the talk concentrates on what we know about supernovae type Ia and the importance of understanding their contributions to the chemical evolution of galaxies and stellar populations.


<< First 1 | 2 | 3 | 4 | 5 | 6 | 7 Last >>

Upcoming talks

Featured talks