Found 8 talks width keyword elliptical galaxies

Thursday March 2, 2023



Early-type galaxies: instructions to build them through mergers
Massive early-type galaxies (ETGs) are "red and dead" systems mainly composed of old and metal-rich stellar populations. In a cosmological context, present-day ETGs are believed to be the remnants of a complex stellar mass assembly history marked by several mergers, which are the consequence of the underlying hierarchical assembly of their host dark matter halos. In this talk, I will deal mainly with the merger-driven evolution of ETGs. Firstly, I will illustrate a comparison between observed ETGs from the MaNGA survey and simulated galaxies from the IllustrisTNG cosmological simulation suite. The aim of this study is to provide an interpretative scenario of the stellar mass assembly history of observed present-day ETGs, comparing the radial distributions of their stellar properties with those of simulated galaxies, in which it is possible to disentangle the contribution of stars formed in situ (i.e. within the main progenitor galaxy) and stars formed ex situ (i.e. in other galaxies) and then accreted through mergers. Then, I will describe how the scaling relation between the stellar mass and stellar velocity dispersion in ETGs evolves across cosmic time. Specifically, by extending the results of Cannnarozzo, Sonnenfeld & Nipoti (2020), I model the aforementioned relation through a Bayesian hierarchical approach, considering ETGs with log(M∗/M⊙) > 9 over the redshift range 0 ≲ z ≲ 4. Together with a new characterisation of the relation, I reconstruct the back-in-time evolutionary pathways of individual ETGs on the stellar mass-velocity dispersion plane to answer the question “how did high-redshift ETGs assemble through cosmic time to reach the functional form of the relation in the present-day Universe?“.
After the main topic, if time permits, I would like to spend a few minutes presenting another extra content (below you can find the title and a brief abstract of this further content). Feel free to include it or not in the announcement mail.
EXTRA - Inferring the Dark Matter halo mass in galaxies from other observables with Machine Learning
In the context of the galaxy-halo connection, it is widely known that the Dark Matter (DM) halos show correlations with some physical properties of the hosted galaxy: the most well-known relation is the so-called Stellar-to-Halo-Mass Relation. However, we know that there are several other empirical relations among galaxy properties, involving, for example, the stellar mass, the gas and stellar metallicities, the black hole mass, etc. Given the complexity of the problem and the high number of galaxy properties that might be related to DM halos, the study of the galaxy-halo connection can be approached by relying on machine learning techniques to shed light on this intricate network of relations. With the aim of inferring the DM halo mass and then finding a unique functional form able to link the halo mass to other observables in real galaxies, I rely on the state-of-the-art Explainable Boosting Machine, a novel implementation of generalised additive models with pairwise interactions, training a model on the IllustrisTNG simulation suite at different redshift.





Thursday February 23, 2023
University of Padova


I present a detailed analysis of the scaling relations of ETGs and suggest a way to predict the evolution of the distributions of galaxies in these planes. This new approach is able to account of several features observed in the FP projections and of the tilt of the Fundamental Plane.


Tuesday October 4, 2022
National Centre for Nuclear Research, Warsaw, Poland


Vimos Public Extragalactic Redshift Survey (VIPERS) is a spectroscopic survey designed to  investigate the spatial distribution of ~90k galaxies on redshift 0.4<z<1.2. The catalogue of spectroscopic observations, combined with auxiliary photometric data, is perfect for evolutionary studies of different types of galaxies. But also for tracing rare objects. One of them are the so-called “red nuggets”, progenitors of the most massive galaxies in the local Universe.  The discovery of red nuggets - highly massive, passive and extremely compact galaxies  -  at high redshift challenged the leading cosmological models, as they do not fit into the evolutionary paths of passive galaxies. Taking into account  that  the galaxies' mergers are stochastic events, it is possible that some red nuggets  remain relatively unaltered for billions of years. Those survivors constitute a group of unique galaxies in the local Universe,  commonly named “relics”. Despite numerous studies dedicated to red nuggets and relics, the link between the population of compact, massive, passive galaxies in the early Universe and their remnants in the local Universe, is still poorly understood.

In my talk I  will present the first spectroscopically selected catalogue of red nuggets at the intermediate redshift.  It is the most extensive catalogue of this kind of galaxies above redshift z > 0.5.  Selected under the most strict criteria, the group of 77 objects consists of a statistically important sample, which allows for analysis of physical properties of those rare passive giants. I will discuss the influence of compactness criteria on the sample size. Moreover I will present  VIPERS red nuggets number densities and discuss the environmental preferences of those exceptional galaxies.

Thursday December 2, 2021
Kavli Cambridge


In the local universe most of the stellar mass is in passive galaxies, where star formation is
absent or at very low levels. Understanding what are the mechanisms that have been
responsible for quenching star formation in galaxies, and transforming them into passive,
quiescent systems, is one of the main observational and theoretical challenges of extragalactic
astrophysics. I will give a brief overview of the several possible quenching causes and physical
processes that have been proposed so far, ranging from feedback from black hole accretion and
starburst activity, to effects associated with the large scale environment in which galaxies live.
Although most of these mechanisms and causes play a role in different classes of galaxies and
at different epochs, multi-band observations are providing growing evidences that just a few of
them play the key, dominant role.
I will conclude by providing prospects for further investigating these aspects and tackling open
questions with the next generation of observing facilities.

Thursday October 10, 2013


The ALHAMBRA (Advance Large Homogeneous Area Medium Band Redshift Astronomical; Moles et al. 2008) survey has observed 8 different regions of the sky, including sections of the COSMOS, DEEP2, ELAIS, GOODS-N, SDSS and Groth fields using a new photometric system with 20 contiguous, ~300A width, filters covering the optical range, plus deep JHKs imaging. The observations, carried out with the Calar Alto 3.5m telescope using the wide field (0.25 deg2 FOV) optical camera LAICA and the NIR instrument Omega-2000, correspond to ~700hrs of on-target science images. The photometric system was specifically designed to maximize the effective depth of the survey in terms of accurate spectral-type and photometric redshift estimation along with the capability of identification of relatively faint emission lines.

The ALHAMBRA Gold catalogue corresponds to a subsample of ~100k bright galaxies (+20.000 stars in the galactic halo and ~1000 AGN candidates), photometrically complete down to magnitude I=23AB, with very accurate and reliable photometric redshift estimations.

Considering that the Spanish community will have privileged access to the data until Nov15th 2013, this seminar is intended to be a brief introduction to the potential (doable) science with the ALHAMBRA-survey.

Tuesday May 24, 2011
Instituto de Astrofisica de Canarias, Spain


We find a distinct stellar population in the counterrotating and kinematically decoupled core of the isolated massive elliptical galaxy NGC 1700. Coinciding with the edge of this core, we find a significant change in the slope of the gradient of various representative absorption line indices. Our age estimate for this core is markedly younger than the main body of the galaxy. We find lower values for the age, metallicity, and Mg/Fe abundance ratio in the center of this galaxy when we compare them with other isolated elliptical galaxies with similar velocity dispersion. We discuss the different possible scenarios that might have lead to the formation of this younger kinematically decoupled structure and conclude that, in light of our findings, the ingestion of a small stellar companion on a retrograde orbit is the most favored.

Thursday February 11, 2010
University of St Andrews, UK


We present our latest measurement of the SMBH mass function at redshift zero based on detailed structural studies of 1743 galaxies extracted from the B-band Millennium Galaxy Catalogue. Using the empirical correlations between the mass of the black hole and the photometric properties of the spheroid, MBH-L and MBH-n we estimated the SMBH mass of each galaxy and from this construct empirically derived SMBH mass functions. In addition, using a sample of 30 nearby elliptical and spiral galaxies, we will present new results showing the near-IR correlation between bulge properties and SMBH mass.

Saturday October 24, 2009
Instituto de Astrofísica de Canarias, Spain


Galaxies are the basic building blocks of the Universe, and understanding their formation and evolution is crucial to many areas of current astrophysical research. Nearby galaxies, being the 'fossil record' of the evolution of galaxies, provide a wealth of detail to test extensively the current models of galaxy formation and evolution. A galaxy's structure is linked to both its mass and evolutionary history. Probing galactic structure requires understanding the distribution of stars among galaxies of all types and luminosities across the full range of environments. We are performing a complete volume-limited (d < 40 Mpc) survey of over 2200 nearby spiral, elliptical and dwarf galaxies at 3.6 and 4.5 μ in the Spitzer Warm Mission to address fundamental questions of galactic structure that are united by the common need for deep, uniform, unbiased maps of the stellar mass in galaxies. I will introduce the survey, give examples of images and of the science that can be done, and explain how other researchers at the IAC can become involved in analysing these exciting data.

« Newer Older »

Upcoming talks

More upcoming talks

Recent Colloquia

Recent Talks