Found 24 talks width keyword abundances

3stx_-RFGT4-thumbnail
Thursday November 4, 2010
Dr. Felix Mirabel
CEA, Service d'Astrophysique, France

Abstract

The so called "dark ages" of the universe began about 400.000 years after the Big Bang as matter cooled down and space became filled with neutral hydrogen for hundreds of millions years. How the Universe was heated and reionized during the first billion years after the Big Bang is a question of topical interest in cosmology. I will show that current theoretical models on the formation and collapse of primordial stars suggest that a large fraction of massive stars should have imploded, forming high-mass black hole X-ray binaries. Then, I will review the recent observations of compact stellar remnants in the near and distant universe that support this theoretical expectation, showing that the thermal (UV and soft X-rays) and non-thermal (hard X-rays, winds and jets) emission from a large population of stellar black holes in high mass binaries heated the intergalactic medium over large volumes of space, complementing the reionization by their stellar progenitors. Feedback from accreting stellar black holes at that epoch would have prevented the formation of the large quantities of low mass dwarf galaxies that are predicted by the cold dark matter model of the universe. A large population of black hole binaries may be important for future observations of gravitational waves as well as for the existing and future atomic hydrogen radio surveys of HI in the early universe.

2MXuD4abyOc-thumbnail
Thursday July 22, 2010
Dr. Sebastian F. Sánchez Sánchez
Centro Astronómico Hispano Alemán de Calar Alto, Spain

Abstract

CALIFA is the largest IFS survey ever performed up to date. Recently started, it will observe ~600 galaxies in the Local Universe with PPAK at the 3.5m of the Calar Alto Observatory, sampling most of the size of these galaxies and covering the optical wavelength range between 3700-7100 Å, using to spectroscopic setups. The main goal of this survey is to characterize the spatially resolved spectroscopic properties (both the stellar and ionized gas components) of all the population of galaxies at the current cosmological time, in order to understand in detail the how is the final product of the evolution of galaxies. To do so, the sample will cover all the possible galaxies within the color-magnitude diagram, down to MB ~ -18 mag, from big dry early-types to active fainter late-type galaxies. The main science drivers of the survey is to understand how galaxies evolve within the CM-diagram, understanding the details the process of star formation, metal enrichment, migrations and morphological evolution of galaxies.


aGqW3YDUnuo-thumbnail
Tuesday May 11, 2010
Drs. Alexandre Vazdekis; Elena Ricciardelli; Jesús Falcón Barroso
Instituto de Astrofísica de Canarias, Spain

Abstract

We present the new stellar population synthesis models based on the empirical stellar spectral library MILES, which can be regarded nowadays as standard in the field of stellar population studies. The synthetic SEDs cover the whole optical range at resolution 2.3 Å (FWHM). The unprecedented stellar parameter coverage of MILES allowed us to extend our model predictions from intermediate- to very-old age regimes, and the metallicity coverage from super-solar to [M/H] = -2.3. Observed spectra can be studied by means of full spectrum fitting or line-strengths. For the latter we propose a new Line Index System (LIS) to avoid the intrinsic uncertainties associated with the popular Lick/IDS system and provide more appropriate, uniform, spectral resolution. We present a web-page with a suite of on-line tools to facilitate the handling and transformation of the spectra. Online examples with practical applications to work with stellar spectra for a variety of instrumental setups will be shown. Furthermore we will also show examples of how to compute spectra and colors with varying instrumental setup, redshift and velocity dispersion for a suite of Star Formation Histories.


j6DwSiQYuKE-thumbnail
Thursday April 15, 2010
Dr. André Milone
Instituto Nacional de Pesquisas Espaciais, Brazil

Abstract

The current databases of empirical star spectra for modelling single-aged stellar populations (SSPs) generally do not chemically characterize their stars completely. Spectral properties of stars and their populations may change considerably if the elemental abundance ratios E/Fe differ from the solar-scaled values. We intend to build up robust integrated spectral energy distribution of SSPs older than 1 Gyr by adopting the MILES database (Medium-resolution Isaac Newton Telescope Library of Empirical Spectra) and taking into account the Mg/Fe ratio of its stars. Magnesium is a proxy of the alpha-capture elements and the alpha/Fe ratio has been widely used as an indicator of the star formation time scale. In this talk, I present how accurate and extensive our compilation and determination of [Mg/Fe] were obtained around MILES to compute state-of-the-art SSP models. Published high resolution measurements were adopted to define a uniform scale of [Mg/Fe] and calibrate our results at medium resolution that were based on the spectral synthesis of two strong Mg features.

081EWenvReI-thumbnail
Tuesday March 30, 2010
Dr. Iván Ramírez
Max Planck Institute for Astrophysics, Germany

Abstract

It has been recently shown that the chemical composition of the Sun is anomalous when compared to most nearby stars of very similar fundamental parameters, so-called solar twins. Compared to these stars, the Sun is deficient in refractory elements relative to volatiles, a finding that we speculate is a signature of the terrestrial planet formation that occurred around the Sun but not in the majority of solar twins. I will discuss these and newer related results, the strengths and weaknesses of our planet formation interpretation, as well as our plans for future observations that can help us better understand the nature of the abundance trends found.


TbTGgmv9Z_k-thumbnail
Monday February 8, 2010
Dr. Roberto Cid Fernandes
Universidade Federal de Santa Catarina, Florianopolis, Brazil

Abstract

This talk is divided into two related parts. First, we will call your attention to a basic, but often overlooked worrying fact, and presents ways of dealing with it. The fact is: an enormous number of galaxies in surveys like the SDSS have emission lines which are too weak (low S/N) to be classified by usual schemes (ie, diagnostic diagrams). It turns out that most of these are AGN-like, so ignoring them on the basis of low S/N (which most people do) leaves as much as 2/3 of these emission line galaxies unaccounted for. The solution: We present a number of alternative methods to rescue this numerous population from the classification limbo. We find that about 1/3 of these weak-line galaxies are massive, metal rich star-forming systems, while the remaining 2/3 are more like LINERs. In the second part, we revisit the old idea by Binette et al (1994) that post-AGB stars can account for the emission line properties of some galaxies. A "retired galaxy" model is presented and compared to data in the SDSS. We find that about 1/4 of the galaxies classified as LINERs in the SDSS are consistent with this model, where all ionizing radiation is of stellar origin. More dramatically, nearly 100% of weak-line LINERs are perfectly consistent with being just retired galaxies, with no active nucleus. If these ideas are correct, contrary to current practice, relatively few LINERs should be counted as bona fide AGN.

cNOF8aF9-lk-thumbnail
Wednesday December 2, 2009
Dr. Elisa Delgado Mena
Instituto de Astrofísica de Canarias, Spain

Abstract

The surface abundance of lithium on the Sun is 140 times less than protosolar, yet the temperature at the base of the surface convective zone is not hot enough to burn Li. A large range of Li abundances in solar type stars of the same age, mass and metallicity is observed, but theoretically difficult to understand. An earlier suggestion that Li is more depleted in stars with planets was weakened by the lack of a proper comparison sample of stars without detected planets. Here we report Li abundances for an unbiased sample of solar-analogue stars with and without detected planets. We find that the planet-bearing stars have less than 1 per cent of the primordial Li abundance, while about 50 per cent of the solar analogues without detected planets have on average 10 times more Li. The presence of planets may increase the amount of mixing and deepen the convective zone to such an extent that the Li can be burned. We also present Be abundances for a sample of stars with and without known planets and discuss the possible relation of these light element with the presence of planetary systems.

5TjsZN9WdMg-thumbnail
Thursday November 12, 2009
Dr. Aníbal García Hernández
Instituto de Astrofísica de Canarias, Spain

Abstract

Asymptotic Giant Branch (AGB) stars are a principal source of gas and dust input into the interstellar medium, being an important driver of chemical evolution in galaxies. Rubidium is a key element to distinguish between high mass (~4-8 M⊙) AGB stars and low mass (~1-4 M⊙) AGBs - high mass AGBs are predicted to produce a lot of rubidium as a consequence of the genuine nucleosynthetic processes (the s-process) that characterise these stars. The Magellanic Clouds (MCs) offer a unique opportunity to study the stellar evolution and nucleosynthesis of AGB stars in low metallicity environments where distances (and so the star's luminosity) are known. We present the discovery of extragalactic rubidium-rich AGB stars in the MCs confirming that the more massive AGB stars are generally brighter than the standard adopted luminosity limit (Mbol~-7.1) for AGB's. In addition, massive MC-AGBs are more enriched in Rb than their galactic counterparts, as it is qualitatively predicted by the present theoretical models; the Rb over-abundance increase with increasing stellar mass and with decreasing metallicity. However, present theoretical models are far from matching the extremely high Rb overabundances observed.

yurbrCurWwc-thumbnail
Thursday September 3, 2009
Dr. Sergio Simón
Instituto de Astrofísica de Canarias, Spain

Abstract

The Orion star forming region is an ideal laboratory for many astrophysical studies. In this talk I will present a study of the chemical composition of early B-type stars in the Orion OB1 association. The main ideas I will talk about are: (1) The importance of self-consistent spectroscopic techniques for the abundance analysis in this type of stellar objects; (2) the study of the homogeneity of abundances in stars from the various stellar subgroups in OriOB1; (3) the comparison of O stellar abundances with recent Solar determinations; (4) the comparison of stellar abundances with those resulting from the analysis of the emission line spectra of the Orion nebula (M42); (5) the study of the oxygen depletion onto dust grains in the Orion nebula. La región de formación estelar de Orión es una laboratorio perfecto para muchos tipos de estudios en astrofísica. En esta charla me centraré en el estudio de abundancias de las estrellas de tipo B temprano presentes en la asociación OriOB1. Las principales ideas que presentaré son: (1) La importancia de los análisis espectroscópicos detallados en la determinación de abundancias en estrellas de tipo B temprano; (2) el estudio de la homogeneidad química de los distintos subgrupos estelares que componen OriOB1; (3) la comparación de la abundancias estelares de oxígeno con determinaciones recientes en el Sol; (4) La comparación de abundancias estelares con aquellas obtenidas a partir de análisis del espectro de M42, la nebulosa de Orion; (5) el estudio de la depleción de oxígeno en granos de polvo en la nebulosa de Orión.

-thumbnail
Thursday July 16, 2009
Prof. David Koo
University of California Observatories, Lick Observatory, USA

Abstract

AEGIS (All-wavelength Extended Groth strip International Survey: aegis.ucolick.org) is on-going survey that opens up new views of the development of galaxies and AGN's at redshifts z about 1. AEGIS is panchromatic like GOODS, with coverage ranging from X-ray to radio, and nearly as deep but more panoramic by covering a 4x larger region. Its backbone is the most Northern (accessible to the GTC) of the four fields of the DEEP2 Keck spectroscopic survey, which provides not only precision redshifts that yield reliable pairs, groups, and environments, but also internal kinematics and chemical abundances. After an overview of the DEEP and AEGIS surveys, I will share some recent highlights, including using a new kinematic measure for distant galaxies to track Tully-Fisher-like evolution; discovering metal poor, massive, luminous galaxies; finding ubiquitous galactic gas outflows among distant star forming galaxies; and exploring the nature of distant x-ray AGNs.

<< First 1 | 2 | 3 Last >>

Upcoming talks


More upcoming talks

Recent Colloquia


Recent Talks