Found 3 talks width keyword molecular processes

Tuesday April 18, 2023
University of Oxford



Nowadays, it is widely accepted that most galaxies undergo an active phase in their evolution. The impact of the energy released by active galactic nuclei (AGN) in the interstellar medium (ISM) of the host galaxy has been proposed as a key mechanism responsible for regulating star formation (SF). The mid-infrared (IR) is the ideal spectral range to investigate the nuclear/circumnuclear regions of AGN since dust extinction is significantly lower compared to the visible range. Furthermore, it provides unique tracers to study the AGN-SF connection such as H2 rotational lines, fine structure lines and Polycyclic Aromatic Hydrocarbons (PAHs). PAHs are also a powerful tool to characterize the ISM in different environments.

Recently, we presented new JWST/MIRI MRS spectroscopy of three Seyfert AGN in which we compare their nuclear PAH emission with that of star-forming regions. This study represents the first of its kind to use sub-arcsecond angular resolution data of local luminous Seyferts (Lbol > 10^44.5 erg/s) with a wide wavelength coverage (4.9-28.1 μm). Our results showed that a suite of PAH features is present in the innermost parts of these Seyfert galaxies. We found that the nuclear regions of AGN lie at different positions of the PAH diagnostic diagrams, whereas the SF regions are concentrated around the average values of SF galaxies. Furthermore, we find that the nuclear PAH emission mainly originates in neutral PAHs while, in contrast, PAH emission originating in the star forming regions favours small ionised PAH grains. Therefore, our results provide evidence that the AGN have a significant impact on the ionization state and size of the PAH grains on scales of ~142-245 pc. This is fundamental since PAH bands are routinely used to measure star-formation activity in near and far SF and active galaxies.

Finally, I will summarise our ongoing JWST work within the GATOS (Galactic Activity, Torus and Outflow Survey) collaboration. In particular, I will focus on our recent study about the survival of PAH molecules in AGN-driven outflows.

Tuesday July 20, 2021
University College of London


The ExoMol project ( provides comprehensive spectroscopic data (line lists) for the study of atmospheres of exoplanets and other hot bodies.  These line lists serve as input for models of radiative transport through hot atmospheres and are useful for a variety of terrestrial applications. The basic form of the database is extensive line lists; these are supplemented with partition functions, state lifetimes, cooling functions, Landé g-factors, temperature-dependent cross sections, opacities, k-coefficients and pressure broadening parameters. Currently containing 80 molecules and 190 isotopologues totaling over 700 billion transitions, the database covers infrared, visible and UV wavelengths. The field of the HR spectroscopy of exoplanets is growing extremely fast and urgently demands molecular data of high precision. Failure to detect molecules in atmospheres of exoplanets is often attributed to the lack of the underlying quality of
the line positions.  These developments have led us to begin a systematic attempt to improve the accuracy of the line positions for the line lists contained in the database. Our new ExoMolHD project aims to provide comprehensive line lists to facilitate their use in characterization of exoplanets using high resolution Doppler shift spectroscopy. Progress on this objective will be presented.

Friday June 12, 2009
Instituto de Astrofísica de Canarias, Spain


Of the 342 planets discovered so far orbiting other stars, 58 'transit' the stellar disk, meaning that they can be detected by a periodic decrease in the starlight flux. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration toward the characterization of exoplanetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflected spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modeling. We also find the fingerprints of the Earth's ionosphere and of the major atmospheric constituent, diatomic nitrogen (N2), which are missing in the reflected spectrum. Our results indicate that the technique of transit spectroscopy of rocky planets may be a very powerful tool for exoplanet atmospheric characterization, and is likely to provide the first detection of a habitable exobiosphere.

« Newer Older »