Found 11 talks width keyword magnetic fields

apZcphg11CU-thumbnail
Thursday January 27, 2022
Prof. Axel Brandenburg
Nordita (Sweden)

Abstract

Following Cowling's anti-dynamo theorem of 1933, there was a long period during which the very existence of dynamos was unclear. Even with the emergence of three dimensional simulations in the late 1980s, people were careful to distinguish true dynamos from just some sort of amplification. Meanwhile, we know of many examples of true dynamos - not only from simulations, but also from several laboratory experiments. Nevertheless, there are still problems, fundamental ones and also very practical ones. After all, we are really not sure how the solar dynamo works. Today, global three-dimensional simulations seem to have an easier time to reproduce the behaviors of superactive stars, but not really the group of inactive stars, to which also the Sun belongs. The Sun itself may actually be special; it has so well defined cycles and it is at the brink of becoming very different. Theoretically, slightly slower rotators should have antisolar rotation, but it is possible that some of those stars never become that slow if stellar breaking ceases for some reason. Sun and starspots are very evident indicators of solar and stellar activity. Their formation is also not well understood. Polarimetry reveals their magnetic helicity, which can be detected even with the solar wind.


FJ5G3U4JK6g-thumbnail
Tuesday June 8, 2021
Dr. Hector Socas-Navarro
IAC

Abstract

In this talk I'll present results from a recent paper in which we have developed a new analysis technique for solar spectra based on artificial neural networks. Our first test applications yielded some unexpected and interesting results. The fine-scale network of temperature enhancements in the quiet middle and upper photosphere have a reversed pattern. Hot pixels in the middle photosphere, possibly associated with small-scale magnetic elements, appear cool at higher levels (log(tau)=-3 and -4), and vice versa. We also find hot arcs on the limb side of magnetic pores, which we interpret as the first direct observational evidence of the "hot wall" effect. Hot walls are a prediction of theoretical models from the 1970s which had not been observed until now.

zlN7_aJghM8-thumbnail
Tuesday May 18, 2021
Prof. ºAke Nordlund
Niels Bohr Institute, University of Copenhaguen

Abstract

(This seminar is organized by the IAU G5 commission on stellar and planetary atmospheres) 

Task-based computing is a method where computational problems are split
   into a large number of semi-independent tasks (cf.
   2018MNRAS.477..624N). The method is a general one, with application not
   limited to traditional grid-based simulations; it can be applied with
   advantages also to particle-based and hybrid simulations, which involve
   both particles and fields. The main advantages emerge when doing
   simulations of very complex and / or multi-scale systems, where the
   cost of updating is very unevenly distributed in space, with perhaps
   large volumes with very low update cost and small but important regions
   with large update costs.

   Possible applications in the context of stellar atmospheres include
   modelling that covers large scales, such as whole active regions on the
   Sun or even the entire Sun, while at the same time allows resolving
   small-scale details in the photosphere, chromosphere, and corona. In
   the context of planetary atmospheres, models of pebble-accreting hot
   primordial atmospheres that cover all scales, from the surfaces of
   Mars- and Earth-size embryos to the scale heights of the surrounding
   protoplanetary disks, have already been computed (2018MNRAS.479.5136P,
   2019MNRAS.482L.107P), and one can envision a number of applications
   where the task-based computing advantage is leveraged, for example to
   selectively do the detailed chemistry necessary to treat atmospheres
   saturated with evaporated solids, or to do complex cloud chemistry
   combined with 3-D radiative transfer.

   In the talk I will give a quick overview of the principles behind
   task-based computing, and then use both already published and still
   on-going work to illustrate how this may be used in practice. I will
   finish by discussing how these methods could be applied with great
   advantage to problems such as non-equilibrium ionization, non-LTE
   radiative transfer, and partial redistribution diagnostics of spectral
   lines.


AXw11SPSfAY-thumbnail
Thursday December 4, 2014
Dr. Klaus Galsgaard
Niels Bohr Institute , Copenhagen, Denmark

Abstract

Recent observations of the solar atmosphere have provided new insights concerning medium-sized jet phenomena taking place in the solar corona. These jets are magnetically controlled and typically take place in regions where the mean magnetic field has an open structure. Observations indicate that at least two different types of jets exist. A simple jet that generally has a near steady state evolution phase with a well behaved and collimated outflow stream. The second type typically combines the characteristics of the first type with an explosive behaviour that significantly changes the topological structure of the jet outflow. Models have attempted to provide physical explanations to the observations, and are in general able to capture a number of the observational characteristics. This talk will discuss both the observations and the models, emphasizing where we succeed and where new progress is need


wPBM529VrXA-thumbnail
Tuesday October 29, 2013
Dr. Frederick Poidevin
IAC

Abstract

I will present an extensive analysis of the 850 microns (353 GHz) polarization maps of the SCUBA Polarimeter Legacy (SCUPOL) Catalogue produced by Matthews et al., focusing on the molecular clouds and star-forming regions. The first half of the presentation will concern the several methods used in order to analyze and characterize the observed polarization maps and a statistical analysis of the results will be presented. The second half of the talk will focus on a method used for describing the turbulent regimes of the four well sampled regions, S106, OMC-2/3, W49, and DR21, based on comparisons with three-dimensional magnetohydrodynamics (MHD) numerical simulations scaled to the observed polarization maps. It will be shown how this method can be used for constraining the values of the inclination angle of the mean magnetic field with respect to the line of sight. Consistency of the results obtained from the comparison of the information extracted from the analysis of the observed and simulated maps with results obtained from independent observation data analysis by other authors will be discussed. Conclusions regarding how simple, ideal, isothermal, and non-self-gravitating MHD simulations may be sufficient in order to describe the large-scale observed physical properties of some molecular cloud envelopes will be given.


zkMYH6WosM4-thumbnail
Thursday November 22, 2012
Dr. Andrés Asensio Ramos
IAC

Abstract

As astrophysicists, we are used to extracting physical information from the observations. The usual procedure is to propose a parametric physical model to explain the observations and use the observations to infer the values of the parameters. However, in our noisy and ambiguous universe, the solution to the inference problem is usually non-unique or diffuse. For this reason, it is important that our inversion techniques give reliable results. In this talk I present a few recent results (dusty tori of AGN, magnetic fields in central stars of planetary nebulae, oscillations of coronal loops, signal detection) in which our group is applying Bayesian ideas to extract information from the observations.


3S2MWrNnrsA-thumbnail
Thursday April 7, 2011
Dr. María Jesús Martínez
Instituto de Astrofísica de Canarias, Spain

Abstract

This question is important because a large fraction of planetary nebulae (about 80%) are bipolar or elliptical rather than spherically symmetric. Modern theories invoke magnetic fields, among other causes, to explain the rich variety of aspherical components observed in PNe, as ejected matter is trapped along magnetic field lines. But, until recently, this idea was mostly a theoretical claim. Jordan et al. (2005) report the detection of kG magnetic fields in the central star of two non-spherical PNe, namely NGC1360 and LSS1362. We find that, contrary to that work, the magnetic field is null within errors for both stars. Then, a direct evidence of magnetic fields on the central stars of PNe is still missing — either the magnetic field is much weaker (< 600 G) than previously reported, or more complex (thus leading to cancellations), or both. The role of magnetic fields shaping PNe is still an open question.


rKuLzZaIxok-thumbnail
Thursday January 27, 2011
Prof. Tom Abel
Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, USA

Abstract

This lecture will address recent progress in modeling the emergence of cosmic structure at high redshifts. Also new insights gained from numerical simulations into the processes relevant for star formation are presented. Rapid magnetic field growth in galaxies and the important role of proto-stellar outflows regulating star formation up to pc scales are particularly highlighted.


ruiZhQYeS58-thumbnail
Wednesday October 20, 2010
Dr. Beatriz Ruiz Granados
Instituto de Astrofísica de Canarias, Spain

Abstract

Recent observations of the rotation curve of M31 show a rise of the outer part that cannot be understood in terms of standard dark matter models or perturbations of the galactic disc by M31's satellites. In this talk, we show a possible explanation of this dynamical feature based on the influence of the magnetic field within the thin disc. We have considered standard mass models for the luminous mass distribution, a Navarro-Frenk-White model to describe the dark halo, and we have added up the contribution to the rotation curve of a magnetic field in the disc. We have found a significant improvement of the fit in the outer part when magnetic effects are considered. Our best-fit requires a field strength of ~ 4μG which is compatible with the observations of the magnetic fields in M31.


JCHRibbkfrM-thumbnail
Thursday November 5, 2009
Prof. Rony Keppens
Centre for Plasma-Astrophysics, K. U. Leuven, Belgium

Abstract

I will present grid-adaptive computational studies of both magnetized and unmagnetized jet flows, with significantly relativistic bulk speeds, as appropriate for AGN jets. Our relativistic jet studies shed light on the observationally established classification of Fanaroff-Riley galaxies, where the appearance in radio maps distinguishes two types of jet morphologies. We investigate how density changes in the external medium can induce one-sided jet decelerations, explaining the existence of hybrid morphology radio sources. Our simulations explore under which conditions highly energetic FR II jets may suddenly decelerate and continue with FR I characteristics. In a related investigation, we explore the role of dynamically important, organized magnetic fields in the collimation of the relativistic jet flows. In that study, we concentrate on morphological features of the bow shock and the jet beam, for various jet Lorentz factors and magnetic field helicities. We show that the helicity of the magnetic field is effectively transported down the beam, with compression zones in between diagonal internal cross-shocks showing stronger toroidal field regions. For the high speed jets considered, significant jet deceleration only occurs beyond distances exceeding hundred jet radii, as the axial flow can reaccelerate downstream to internal cross-shocks. This reacceleration is magnetically aided, due to field compression across the internal shocks which pinch the flow.

« Newer 1 | 2 Last >>