Found 36 talks width keyword exoplanets

Thursday January 29, 2015
Dr. France Allard
Centre de Recherche Astronomique de Lyon


Understanding the atmospheric and evolutive properties of very low mass stars, brown dwarfs, and gas giant exoplanets have been important challenges for modelers around the world since the discovery of the first brown dwarfs in the Pleiades cluster (Rebolo et al. 1995) and in the field (Nakajima et al. 1995). The early studies of brown dwarfs have provided rich insights into atmospheric physics, with discoveries ranging from cloud formation (Tsuji et al. 1996), methane bands (Oppenheimer et al. 1995) and ammonia bands (Delorme et al. 2008), to the formation of wasi-molecular KI-H2 absorption (Allard et al. 2007), and to disequilibrium chemistry (Yelle & Griffith 2001). New classical 1D models yield spectral energy distribution (SED) that match relatively well despite these complexities. These models have for instance explained the spectral transition from M to L, T and now Y brown dwarf spectral types (Allard et al. 2013). However, in presence of surface inhomogeneities revealed recently for a nearby (2 pc) brown dwarf (Crossfield et al. 2014), the SED may well fit even exactly, but the model parameters could be far from exact, e.g. with the effective temperature by several hundred kelvins too cool in the case of dusty brown dwarfs and young gas giant exoplanets! I will review the progress achieved in reproducing the spectral properties of very low mass stars, brown dwarfs and gas giant exoplanets, and review progress in modeling more accurately their atmospheres using Radiation HydroDynamical (RHD) simulations.

Tuesday December 2, 2014
Prof. Tsevi Mazeh
Tel Aviv University


The angle between the stellar spin axis and the orbital planetary angular momentum of a planet, also referred to as the obliquity of the system, is a matter of intense study in recent years, for the transiting planets of the Kepler mission in particular. Some evidence was found for two populations of hot Jupiters - one around cool stars with orbits well-aligned with the stellar rotational axes, and the other one around hot stars with isotropic distribution of obliquities, including planets with retrograde motion. It was suggested that the primordial planetary obliquity is isotropic, and cool stars have reached their zero-obliquity state by tidal re-alignment.

The talk will summarize the observational techniques for measuring planetary obliquities, and the different theoretical approaches to interpret this new, unexpected feature of exo-planet population. Finally, I will present a surprising statistical new result that emerges from the study of Kepler light curves of stellar rotation, suggesting the alignment of cool stars is probably not the result of tidal interaction.

Thursday October 23, 2014
Prof. Sara Seager


The discovery and characterization of exoplanets have the potential to offer the world one of the most impactful findings ever in the history of astronomy?the identification of life beyond Earth. Life can be inferred by the presence of atmospheric biosignature gases? Gases produced by life that can accumulate to detectable levels in an exoplanet atmosphere. Detection will be made by remote sensing by sophisticated space telescopes. The conviction that biosignature gases will actually be detected in the future is moderated by lessons learned from the dozens of exoplanet atmospheres studied in last decade, namely the difficulty in robustly identifying molecules, the possible interference of clouds, and the permanent limitations from a spectrum of spatially unresolved and globally mixed gases without direct surface observations. The vision for the path to assess the presence of life beyond Earth is being established.

Thursday October 2, 2014
Dr. Adam Burgasser
University of California San Diego


Over the past two decades, advances in infrared instrumentation have allowed us to identify a vast and previously unseen population of low-temperature stars, brown dwarfs and free-floating extrasolar planets, collectively called ultracool dwarfs. These sources, with surface temperatures reaching below 0ºC, encompass three new spectral classes and include some of the nearest systems to the Sun. Research in this field is now concentrating on the physical characterization of the ultracool dwarf population and application to Galactic studies. In this talk, I will summarize the recent observational advances in ultracool dwarf research, including the recent discovery of the Y dwarf spectral class. I will then describe our ongoing IRTF/SpeX survey, which has measured the low-resolution, near-infrared spectra of over 1500 late M, L and T dwarfs and uncovered new subpopulations of young (5-30 Myr) brown dwarf, metal-poor halo brown dwarfs and short-period spectral binaries.

Thursday February 20, 2014
Dr. Enric Pallé


Our group is presently conducting an observational campaign, using the 10-meter Gran Telescopio Canarias (GTC), to obtain the transmission spectrum of several exoplanets during a transit event. The GTC instrument OSIRIS is used in its long-slit spectroscopic mode, covering the spectral range of 520-1040 nm, and observations are taken using a set of custom-built slits of various, broad, widths. We integrate the stellar flux of both stars in different wavelength regions producing several light curves and fit transit models in order to obtain the star-to-planet radius ratio Rp/Rs across wavelength. A Markov Chain Monte Carlo (MCMC) Bayesian approach is used for the transit fitting. With our instrumental setup, OSIRIS has been able to reach precisions down to 250 ppm (WASP-48b, V=11.06 mag) for each color light curve 10 nm wide, in a single transit. Central transit timing accuracies have been measured down to 6 seconds.

Here, we will present refined planet parameters, the detection of planet color signatures, and the transmission spectrum of a set of know transiting exoplanets, namely: WASP-43b, HAT-P-32b, HAT-P-12b, WASP-48b. We will also discuss the capabilities and limitations of GTC with current and future instrumentation, and the role of GTC as tool for the follow up of faint Kepler targets. In particular, we will present the GTC observations of the intriguing evaporating planet KIC 12557548b, for which we performed simultaneous color light curves, and a search for alkali elements in its planetary tail. Other setups for observations (Broad and tunable filter photometry) have also been used and will be briefly discussed. The lessons learned from our GTC exoplanet observations will be discussed in the context of the E-ELT future capabilities.


Thursday January 23, 2014
Mr. Alejandro Suárez
Instituto de Astrofisica de Canarias


The discovery of earth-like planets is nowadays the main goal of the entire exoplanets field. Despite the recent success of transiting programs, the measurement of radial velocities (RV) is still the most powerful method to find them. M-Dwarfs, given their low masses, and close-in habitable zone have become the perfect targets for the current generation of spectrographs. In this talk I will present our own M-Dwarfs RV program here at the IAC, explaining our methods, goals, difficulties and preliminary results.

Tuesday July 2, 2013
Dr. Sergio Hoyer


I will present the last results of the Transit Monitoring in the South (TraMoS) project. Since 2008, TraMoS has monitored transits of 30 exoplanets with telescopes located in Chile with the following goals: (1) to refine the physical and/or orbital parameters of those exoplanet systems, and (2) to search for Transit Timing Variations (TTVs) and perturbations in other transit parameters, that could indicate the presence of additional bodies in the system.   I will also discuss recent results and the scope of ongoing/future exoplanets projects at the IAC, in particular: transmission spectroscopy of selected exoplanets, secondary eclipse observations and dynamical simulations to validate/confirm exoplanets candidates.

Thursday June 27, 2013
Dr. Didier Queloz
Geneva Observatory, Astronomy Department, University of Geneva


The discovery of new planets beyond our solar system, in particular the detection and characterization of other habitable planets similar to the Earth, is a fascinating intellectual adventure. The completely unexpected characteristics of exoplanets are capturing the imagination and interest of the scientific community and the general public. More recently the large population of Super-Earth planet questions the universality of our Solar System as a typical planetary system. While the quest to find bodies similar to the Earth is still on going, the first spectra of exoplanets have been taken, signaling the shift from an era of discovery to one of physical and chemical characterization. This talk will provide an overview of current outcomes of planet programs as well as its limitation and prospects to move forward.

Thursday June 6, 2013
Dr. Enric Pallé


El pasado 6 de Junio de 2012 tuvo lugar el ultimo transito de Venus frente al Sol del siglo XXI, visible desde la Tierra. Los transitos de Venus han sido observados historicamente proporcionando informacion sobre del tamaño del Sol o la distancia Tierra-Sol. Hoy en dia, con la explosion del campo de exoplanetas, y la cada vez mas cercana deteccion de planeta potencialmente habitables, el transito de Venus ofrecia una oportunidad unica de medir el espectro de transmision de un planeta rocoso. Con esta intencion, en el IAC se diseño intrumentacion especifica y se realizo una expedicion a Australia, al tiempo que se observaba tambien desde telescopios en Chile. Este es un resumen de las peripecias personales, intrumentales y cientificas que suponen este tipo de retos, y que llevaron a la *posible* deteccion del dioxido de carbono en la atmosfera de Venus.

Friday March 15, 2013
Dr. Prof. Günther Wuchterl
Thüringer Landessternwarte, Tautenburg


The CoRoT space mission aims at detecting planets with the transit method. In operation for more than 6 years, the instrument has monitored a couple of ten fields located in two opposite directions the Galactic plane for durations up to about 160 days. Transits are detected in about 100 up to 300 light curves per run. The large majority of them are however pinpointed as transiting stellar systems thanks to the identification of secondary eclipses or light curve modulation. The nature of the remaining candidates is then assessed through a multi-step strategy of complementary observations. This approach has allowed the discovery of a variety of planets with a large range of properties, from the first Super-Earth, CoRoT-7b to CoRoT-9b, the first temperate hot Jupiter or even the two transiting companions in the theoretical mass domain of brown dwarfs. We will review the status of the mission and then present the CoRoT exoplanetary systems and their properties.

<< First 1 | 2 | 3 | 4 Last >>