Found 57 talks archived in The Galaxy

Or79N9L25so-thumbnail
Thursday June 8, 2023
Dr. Cristina Chiappini
Leibniz Institute for Astrophysics Potsdam, AIP, Germany

Abstract

 

In this seminar I will focus on how the avalanche of new data changes our views on how our Galaxy formed and evolved. Precise astrometric, spectroscopic, photometric and asteroseismic data can be combined to pin down different processes that have shaped the Milky Way. This data will be discussed and illustrated with examples of what is possible to achieve by combining chemistry , kinematics and age information. In particular, the impact of asteroseismology of red giants on Galactic Archaeology in the context of large spectroscopic surveys will be highlighted. Finally, it will be shown why more data is needed and what are some of the future plans for the next 10-20 years.

i1KS2YngkMA-thumbnail
Thursday April 27, 2023
Dr. Emma Fernandez Alvar
IAC

Abstract

The previous years have witnessed a big leap forward in our understanding of the Milky Way. Thanks to the highly accurate astrometry and photometry provided by the Gaia mission in combination with large photometric and spectroscopic all-sky surveys, we have now a clearer view of the chemo-dynamics of the stellar populations that constitute our Galaxy. Our former characterization of the Milky Way components (the bulge, halo, and thick and thin discs) is now compromised by the latest discoveries and their limits are blurrier than ever. However, hints on the kind of events and processes that led to the formation of our Galaxy emerge from the analysis of these high-quality data. In this talk I will review the latest results about what caused the current stellar halo configuration and the observational evidences of the dawn of the Milky Way’s disc. I will also present the project carried out at the ULL/IAC to derive the star formation history of the Milky Way which will provide the temporal information that is still missing in Galactic research.

 

 

 

https://rediris.zoom.us/j/85737198942?pwd=dG1lYmNVRjR3dzRGZFhldUhGRloyUT09
ID de reunión: 857 3719 8942

Código de acceso: 350472

https://youtube.com/live/i1KS2YngkMA?feature=share


-thumbnail
Thursday November 10, 2022
Dr. Vanessa Hill
OCA

Abstract

To understand the early phases of galaxy formation, metal-poor stars in the local universe play a special rôle, allowing to trace both how galactic assembly proceeds, and the conditions in which early star formation proceed. Metal-poor stars in our Galaxy and its satellites are fossils of these past processes and have therefore been the subject of intense dedicated searches and surveys since decades. Here I shall review some of the recent results that the « Pristine » narrow-band photometric survey at CFHT, has enabled, aided by the transformational information brought by the Gaia space mission. These results range from enravelling a very primordial disc in the Milky-Way, characterizing very pristine streams of stars in the galactic halo, and characterizing the co-existing halo and bulge populations in the inner parts of the Milky-Way. Finally, I will outline the plans to characterise further these extreme and very metal-poor stars with the new WEAVE multi-object facility that should start its science surveys early 2023.

 

To understand the early phases of galaxy formation, metal-poor stars in the local universe play a special rôle, allowing to trace both how galactic assembly proceeds, and the conditions in which early star formation proceed. Metal-poor stars in our Galaxy and its satellites are fossils of these past processes and have therefore been the subject of intense dedicated searches and surveys since decades. Here I shall review some of the recent results that the « Pristine » narrow-band photometric survey at CFHT, has enabled, aided by the transformational information brought by the Gaia space mission. These results range from enravelling a very primordial disc in the Milky-Way, characterizing very pristine streams of stars in the galactic halo, and characterizing the co-existing halo and bulge populations in the inner parts of the Milky-Way. 
Finally, I will outline the plans to characterise further these extreme and very metal-poor stars with the new WEAVE multi-object facility that should start its science surveys early 2023.

q1b98yBliFQ-thumbnail
Thursday October 20, 2022
Dr. Massimiliano Gatto
INAF-Osservatorio di Capodimonte, Naples, Italy

Abstract

The Magellanic Clouds (MCs) are the closest example of a three-body
interacting system composed of the Milky Way (MW), the Large Magellanic Cloud
(LMC), and the Small Magellanic Cloud (SMC). Therefore, the unique opportunity
provided by their relative proximity allowed us to analyse with matchless detail
the dynamical and morphological evolution that a galaxy experience as a
consequence of the mutual gravitational interaction with its neighbors. In this
context, we performed a multi-faceted analysis, taking advantage of astrometric,
kinematics, and photometric data, with the main goal of unveiling the past
evolutionary path of the MCs and their intense interaction history. We tackled
this task by using two complementary approaches: (i) we adopted the properties
of the MCs star cluster (SC) system to get insights into their past evolution
and (ii) we probed the low-luminous regime of the outer regions of the MCs as
they are the most sensitive to recent or past tidal stripping events. I will
discuss the main outcomes up-to-date of this project and its future perspectives
in light of the new ongoing facilities.

Zoom link: https://rediris.zoom.us/j/81617686828?pwd=YUpBMXpobUpnYzlpUzluTGo1N2hRQT09

Meeing ID: 816 1768 6828

 Passcode: 990310

https://youtu.be/q1b98yBliFQ



rWjmlb2DRYI-thumbnail
Thursday October 6, 2022
Dr. Henri Boffin
ESO

Abstract

The tidal tails of stellar clusters are an important tool for studying the clusters’ birth conditions, their evolution, coupling, and interaction with the Galactic potential, and to understand how field stars populate the Milky Way. Thanks to Gaia, much progress has been accomplished in finding tails of open clusters. We will show here that the physical size of such tidal tails is larger than previously thought. Their identification requires combining the sophisticated analysis of the Gaia catalogue using machine learning techniques to the use of N-body simulations and the new compact convergent point method. We will highlight recent results about the tails of the Hyades and of NGC 752, which extend over several hundreds of parsecs and present puzzling asymmetries that likely provide constraints on the potential of Milky Way. Finally, we will also present the extension of our studies to a large ensemble of open clusters and show how our analysis opens a completely new window on the study of open clusters, whose potential will be fully unleashed with future Gaia data releases.


o0J6h2Ipo2k-thumbnail
Thursday May 12, 2022
Dr. Eugene Vasiliev
IoA Cambridges

Abstract

I discuss the dynamical interactions between the Milky Way and its satellite galaxies, focusing on the closest and most massive satellites - the Large Magellanic Cloud (LMC) and the Sagittarius dwarf galaxy. The former just has had its first close encounter with the Milky Way very recently, and the latter has been orbiting our Galaxy for several Gyr and is tidally disrupting, leaving a prominent tidal stream spanning the entire sky. Thanks to the abundant and precise observational data from the Gaia satellite and various spectroscopic surveys, we now have a very detailed view of the Sagittarius stream and the remnant. It appears that to reproduce its observed properties, one needs to take into account the gravitational effect of the LMC itself and the effect that it produces on the motion of the Milky Way: an intricate dance of three galaxies. The LMC also affects the motion of other streams and satellite galaxies in the outskirts of the Milky Way, and I discuss an approach for compensating these perturbations in the context of dynamical modelling of the Milky Way mass distribution and the analysis of satellite orbits.


Kk-BWHw_YMY-thumbnail
Thursday April 21, 2022
Dr. Robert Grand
IAC

Abstract

Recent years have seen impressive development in cosmological simulations for spiral disc galaxies like the Milky Way. I present a suite of high-resolution magneto-hydrodynamic simulations that include many physical processes relevant for galaxy formation, including star formation, stellar evolution and feedback, active galactic nuclei and magnetic fields. I will discuss how these processes affect the formation of galactic discs, and what these simulations can tell us about the formation of the Milky Way, such as the properties of the Galaxy's putative last significant merger and its effect on the formation of the thick disc and stellar halo. 


-thumbnail
Thursday February 17, 2022
Dr. Else Starkenburg
Kayptern institute

Abstract

The lowest metallicity stars that still exist today represent a window into the early Universe. Studying these stars gives us a local avenue to guide our understanding of star formation and supernova feedback in the early Universe, the early build-up of galaxies like our Milky Way, and the epoch of reionization. In this talk I will present recent results of the Pristine survey, a narrow-band photometric survey of the Milky Way designed to get metallicity information for millions of stars very efficiently. I will discuss what we have learned from our analysis of the most metal-poor stars about the early formation of the Milky Way. Moreover, I will highlight the bright future for this type of study in synergy with the upcoming highly-multiplexed spectroscopic surveys.


WN6b2Hng_ew-thumbnail
Thursday January 20, 2022
Dr. David S. Aguado
Universidad de Florencia

Abstract

One prediction of ΛCDM is the existence of partially phase-mixed substructures from accreted dwarf galaxies in the Milky Way stellar halo. Substructure originating in a single accretion event can be readily identified as a tight cluster of stars in phase space with similar chemical properties. Recently, the discovery of the Gaia Sausage Enceladus (GSE) has revolutionised our understanding of the complex assembly of the Milky Way halo. We present a review of the chemistry that characterises the last major merger that happened to the Milky Way some 9-10 Gy ago.


HS5XCzpEPCc-thumbnail
Thursday November 25, 2021
Dr. Florent Renaud
Lund Observatory

Abstract

The formation and evolution of galaxies across cosmic time proceeds in different phases, paced by their internal evolution and external factors like gas accretion and mergers. The complex and always changing interplay between these mechanisms drives the assembly of galaxies and the physical conditions for star formation, which leaves observable imprints on the stellar populations. Large astrometric and spectroscopic surveys (e.g. Gaia, APOGEE, GALAH) collect the signatures of these past events in the building history of the Milky Way. However, simulations and models are necessary to decode the data. In this talk, I will present results from a series of hydrodynamical simulations of Milky Way-like galaxies, both in isolation and in cosmological context using the VINTERGATAN simulation. I will show the crucial role of mergers, and of the end of the merger phase, in forming the thick and thin Galactic discs, and making the transition between the two. I will then nuance this conclusion by explaining why the secular consumption of gas enables a similar transition, as well as the emergence of spirals, without any external factors.