Found 49 talks archived in The Galaxy

Tuesday September 3, 2013
Dr. Jerry Sellwood
Rutgers University, USA


2- Poisson solvers

- trees

- fixed and adaptive grids

- parallelization

Monday September 2, 2013
Dr. Ken Freeman
Australian National University, Australia


1-  Overview of the structure of our Galaxy in the context of other galaxies

- the basic components

- dark matter properties

- general ideas about galaxy assembly

Monday September 2, 2013
Dr. Leo Girardi
Osservatorio Astronomico di Padova, INAF, Italy


1- The basics

- overview of stellar evolution as a function of mass and metallicity

- from evolutionary tracks to isochrones

- quick overview of chemical changes at the stellar surface

Monday September 2, 2013
Dr. Ortwin Gerhard
Max-Planck-Institut fuer extraterrestrische Physik, Germany


1- Fundamental stellar dynamics

- relaxation, collisionless dynamics

- distribution functions, Jeans eqs, etc.

Monday September 2, 2013
Dr. Jerry Sellwood
Rutgers University, USA


1- The use and abuse of N-body codes

- relaxation in spheres and disks,  collective enhancement

- code structure, block time steps

Thursday July 4, 2013
Dr. Tom Maccarone
Texas Tech University


In the past few years, a series of discoveries have been made of objects which appear to be accreting stellar mass black holes in globular clusters -- both in the Milky Way and in other nearby galaxies. I will discuss why the theoretical work which suggested that such objects would be unlikely to exist, the observations showing they do exist, some of the unusual aspects of some of the individual sources, and the new theoretical framework for producing them.

Thursday May 9, 2013
Dr. Inmaculada Martínez Valpuesta
Max-Planck-Institute for Extraterrestrial Physics


Among the different effects of secular evolution of galaxies we find how bars influence enormously their host galaxies. For many years now, it is known how the evolution of bars will produce different boxy/peanut and X-shape bulges. In this context our Milky Way is an example of a boxy bulge, and we will present a self consistent N-body simulation of a barred galaxy that will be compared with some of the Milky Way available data. We will compare the model in terms of morphology and structure, kinematics and finally metallicity gradients.

Tuesday November 6, 2012
Dr. Matteo Monelli, Dr. Antonio Milone


The classical idea that globular clusters are the prototypes of simple stellar populations has been revolutionized in the last few years. Multiple sequences of stars have been detected in the colour-magnitude diagram of a number of clusters, mostly thanks to high-precision HST photometry, and the correlation with the chemical properties of different generations of stars has been demonstrated. In this talk, we will first present a summary of the observational picture, and we will then introduce the SUMO project (a SUrvey of Multiple pOpulations). This is a long-term project, lead here at the IAC and aimed at detecting and characterizing multiple populations in a large sample of globular clusters. We will review the scope, the observing and reduction strategy, and the first results. So far, data for more than 30 clusters have been secured, using the wide field imagers available at the 2.2m ESO/MPI and INT telescope, thus covering both hemispheres. We will present a new photometric index which turned out to be very effective in detecting multiple RGBs in nearly all the clusters analyzed so far. The connection with the chemical content of the different populations will be also discussed.

Thursday April 19, 2012
Dr. Carlos González Fernández
Universidad de Alicante, Spain


Abstract: The study of the structure of our Galaxy, particularly its inner disc, has always been hindered by two factors: interstellar extinction dims even the brightest stars at optical wavelengths and the high source density prevents us, as the proverbial trees, to see the big galactic picture. 

With this talk we give a broad introduction of the historical efforts to alleviate these issues in the neverending quest to dig deeper into the Milky Way, followed by a overview of the first results obtained by the VVV-Vista survey, that maps the southern Galactic sky with unprecedent depth and resolution.

Thursday November 10, 2011
Dr. Ricardo Genova-Santos, Mr. Carlos Lopez Caraballo
Instituto de Astrofísica de Canarias, Spain


The anomalous microwave emission (AME) is an additional diffuse foreground component, originated by an emission mechanism in the ISM different from the well-known synchrotron, free-free and thermal dust emissions. It was first discovered at the end of the nineties as a correlated signal between microwave CMB maps and infrared maps tracing the dust emission. Ever since several detections have been found in individual clouds in our Galaxy. This emission is an important contaminant for current and future CMB experiments, and therefore its characterization (both in temperature and in polarization) and understanding is mandatory. So far different theoretical models have been proposed to explain the physical mechanism that give rise to this emission. In this talk we will review these models and will present the current observational status of the AME, with particular emphasis on some recent studies that have been performed by our group in the IAC in the Perseus molecular complex and in the Pleiades reflection nebula.