Found 176 talks archived in Galaxies

Video
Tuesday June 11, 2013
Dr. Jorge Sánchez Almeida
IAC

Abstract

The direct accretion of pristine gas streams is predicted to be the main mode of galaxy disk growth in the early universe (cold-flows). We (think we) have discovered this physical process at work in the local Universe. The finding is one of the outcomes of our in-depth study of local extremely metal poor (XMP) galaxies. I will explain the main observational properties of XMPs, in particular, their tendency to have cometary or tadpole morphology, with a bright peripheral clump (the head) on a faint tail. Tadpole galaxies are rare in the nearby universe but turn out to be very common at high redshift, where they are usually interpreted as disk galaxies in early stages of assembling. We have found the heads to be giant HII regions displaced with respect to the rotation center, with the galaxy metallicity being smallest at the head and larger elsewhere. The resulting chemical abundance gradient is opposite to the one observed in local spirals, and suggests a recent gas accretion episode onto the head. Thus, local XMP galaxies seem to be primitive disks, with their star formation sustained by accretion of external metal poor gas. I will argue how the same mechanism may be driving the star formation in many other local galaxies. Ongoing observational projects to confirm these findings and conjectures will be briefly mentioned.


Video
Tuesday May 28, 2013
Dr. Enrique Pérez Montero

IAA

Abstract

 Chemical abundances derived using emission-line spectra in ionized gaseous nebulae are between the most useful properties that can be derived to understand the evolution of galaxies from the local Universe up to very high redshifts. Since nitrogen is one of the most abundant metals in the gas-phase of galaxies and its emission-lines can be measured many times instead of those emitted by oxygen, it is important to be aware of the implications of the variations in the nitrogen-to-oxygen ratio for the derivation of total metallicity and what are the advantages of using this abundance ratio to derive other evolutionary properties in different emission-line objects. We will also see the utility of some observational techniques, such integral field spectroscopy, to disentangle between different processes implied in the excess of observed nitrogen as derived from integrated observations.


Video
Thursday May 23, 2013
Dr. Adriana De Lorenzo-Cáceres Rodríguez
University of St Andrews

Abstract

The general picture of galaxy formation and evolution includes bars as the main drivers of the internal secular processes affecting the lifetime of disc galaxies. Bars are present in a very high fraction of all the spiral galaxies found at different redshifts, and the processes inducing their formation or the effects they may have on their host galaxies are still under discussion. Particularly interesting is the case of double-barred galaxies: at least 20% of all spirals have turned out to host not only one but two bars embedded in them. These two bars appear randomly oriented and independently rotating. The formation of such a double-barred system has been the goal of several numerical simulations and the results obtained so far can be roughly divided in two big groups: gas-rich and gas-free formation scenarios. In the same way a single bar does, double-bar systems might also promote gas inflow and contribute to the internal secular evolution. Moreover, they have also been proposed as a very efficient mechanism for the feeding of the active galactic nuclei.

All the previous theoretical hypothesis on the formation and evolution of double-barred galaxies have not been tested due to the lack of observational works focused on these systems. With this motivation, during my PhD I observed a sample of double-barred galaxies in order to fully analyse their kinematics and stellar populations. Among the most interesting results, it is important to highlight the discovery of the sigma-hollows, which are the only known kinematical signature of the presence of inner bars, or the fact that inner bars are younger and more metal-rich than their surrounding regions. In this talk I will present the whole work and discuss the results in the framework of the different formation scenarios and the role that these inner bars may be playing in the evolution of their host galaxies.


Video
Tuesday April 30, 2013
Dr. Javier Rodríguez Zaurín
IAC

Abstract

Although there is increasing speculation that the evolution of galaxy bulges may be regulated by AGN-induced outflows associated with the growth of the central supermassive black holes, the importance of AGN-induced outflows relative to those driven by starbursts has yet to be established observationally. In this context we have recently presented a study focusing on AGN-induced outflows in a sample of local Seyftert-ULIRGs. Perhaps, our most interesting result is related to the energy that the AGN returns to the galaxy in the form of feedback. We find that the typical mass outflows rates and kinetic powers of the emission line outflows are, in general, less energetically significant than the neutral and molecular outflows in ULIRGs and moreover, than those required today in the majority of the current hydrodynamic simulations that include AGN feedback. However, the uncertainties in the existing measurements are large, and more accurate estimates of the radii, densities and reddening of the outflows are required to put these results on a firmer footing. In this context, we are using HST /ACS+STIS and VLT-Xhsooter observations to accurately estimate sizes, electron densities and reddening to eventually provide the most accurate estimates of the kinetic powers associated with the ionized gas. In this talk I will describe in detail the results of this study focussing on testing the current simulations of hierarchical galaxy evolution.


Video
Thursday April 25, 2013
Dr. Ismael Pérez Fournón
IAC

Abstract

How do the first galaxies form and evolve? Optical and near-infrared deep surveys are now finding galaxies at very high redshifts. However, they are typically small, not massive and present some but not very high star formation. But now the Herschel Multi-tiered Extragalactic Survey (HerMES), the largest project that has being carried out with the Herschel Space Observatory, in collaboration with other groups, has discovered a massive, maximum-starburst galaxy at a redshift of 6.34. The presence of galaxies like HFLS3 in the early Universe challenges current theories of galaxy fomation and evolution. I will describe the method we have developed to find these galaxies, the follow-up observations with different facilities and the main physical properties of this extreme object.


Video
Tuesday April 23, 2013
Dr. Ignacio Trujillo
IAC

Abstract

Taking advantage of the ultra-deep near-infrared imaging obtained with the Hubble Space Telescope on the Hubble Ultra Deep Field, we detect and explore for the first time the properties of the stellar haloes of two Milky Way-like galaxies at z~1. We find that the structural properties of those haloes (size and shape) are similar to the ones found in the local universe. However, these high-z stellar haloes are approximately three magnitudes brighter and exhibit bluer colours ((g-r)<0.3 mag) than their local counterparts. The stellar populations of z~1 stellar haloes are compatible with having ages <1 Gyr. This implies that the stars in those haloes were formed basically at 1<z<2. This result matches very well the theoretical predictions that locate most of the formation of the stellar haloes at those early epochs. A pure passive evolutionary scenario, where the stellar populations of our high-z haloes simply fade to match the stellar halo properties found in the local universe, is consistent with our data.


Video
Tuesday March 19, 2013
Dr. Nicolas Laporte
IAC

Abstract

Evolution of galaxies is relatively well known up to z ~ 5, but beyond this limit and regarding the few number of galaxies confirmed by spectroscopy, their evolution is still uncertain. In the last five years, many projects and instruments aiming at pushing the limits of the Universe have emerged. Among them, the WIRCam Ultra Deep Survey (WUDS), a very large (~400 arcmin^2 field of view) and deep (m_H=27.00 AB) survey covering wavelength from Y to Ks bands, dedicated to select the brightest sources at z > 4.5, has just been finished.This survey takes benefit from the deep images from the CFHT-LS (Groth Strip) in u, g, r, i and z-band to improve the wavelength coverage and thus the determination of photometric redshift in each sample. The evolution of galaxies has been studied through the evolution of the UV Luminosity Function from z~5 up to z~9. During this talk I will present you the WIRCam Ultra Deep Survey and the most popular method used to select the very high-redshift sources. Then I will focus on the determination of the luminosity function and on the implications of this evolution on the Epoch of Reionization. I will finish this presentation by giving some perspectives, and especially the results that we can expected from futures instruments and telescopes (e.g. EMIR @ GTC, KMOS and MUSE @ VLT, JWST, E-ELT).


Video
Tuesday February 19, 2013
Dr. Helena Domínguez Sánchez
IAC

Abstract

In this talk we will show the evolution of high-redshift (z≥ 1.4) quiescent galaxies in the COSMOS field. We have studied an IRAC (mag 3.6 μm < 22.0) selected sample of ~ 18 000 galaxies at z≥ 1.4 in the COSMOS field with multiwavelength coverage extending from the U band to the Spitzer 24 μm one. We have derived accurate photometric redshifts and other important physical parameters [masses, ages and star formation rates (SFR)] through a SED-fitting procedure. Galaxies have been divided according to their star formation activity into actively star-forming, intermediate and quiescent galaxies depending on their specific star formation rate (sSFR = SFR/M). The evolution of the Galaxy Stellar Mass Funtion (GSMF) of the different populations, in particular of the quiescent galaxies, has been investigated in detail. There is a significant evolution of the quiescent stellar mass function from 2.5 < z < 3.0 to 1.4 < z < 1.6, increasing by ~1 dex in this redshift interval. We find that z ~1.5 is an epoch of transition of the GSMF: while the GSMF at z≳ 1.5 is dominated by the star-forming galaxies at all stellar masses, at z≲ 1.5 the contribution to the total GSMF of the quiescent galaxies is significant and becomes higher than that of the star-forming population for M≥ 1010.75 Msun. We derive the fraction of quiescent/star-forming galaxies with redshift, as well as the stellar mass density. We also compare our results with the predictions of theoretical models. Finally, I will introduce my current project: studying in deeper detail the IRAC drop-outs of the sample with new nIR (ULTRA-VISTA) and fIR (Herschel) data to elucidate between very dust-obscured objects or high-z star forming galaxies, which could help us to put some constrains to the high-mass end of the GSMF at high-z.


Video
Tuesday January 29, 2013
Dr. Jairo Méndez Abreu
IAC

Abstract

The effects that environment produce on galaxy disks and how they modify the subsequent formation of bars need to be distinguished to fully understand the relationship between bars and environment. To shed light on this issue, we derive the bar fraction in three different environments ranging from the field to Virgo and Coma Clusters, covering an unprecedentedly large range of galaxy luminosities (or, equivalently, stellar masses). We confirm that the fraction of barred galaxies strongly depends on galaxy luminosity. We also show that the difference between the bar fraction distributions as a function of galaxy luminosity (and mass) in the field and Coma Cluster is statistically significant, with Virgo being an intermediate case. We interpret this result as a variation of the effect of environment on bar formation depending on galaxy luminosity. We speculate that brighter disk galaxies are stable enough against interactions to keep their cold structure, thus, the interactions are able to trigger bar formation. For fainter galaxies, the interactions become strong enough to heat up the disks inhibiting bar formation and even destroying the disks. Finally, we point out that the controversy regarding whether the bar fraction depends on environment could be resolved by taking into account the different luminosity ranges probed by the galaxy samples studied so far.


Video
Thursday January 24, 2013
Dr. Emily Wisnioski
Max Planck Institute for Extraterrestrial Physics

Abstract

Morphologies of star-forming galaxies at z>1 are typically irregular containing a handful of dominant bright regions. Recent observational evidence suggest that many of these galaxies are governed by disc-like rotation. Using Halpha galaxy kinematics from OSIRIS+LGSAO we find that within z~1 turbulent discs star-forming regions have average sizes of 1.5 kpc and average Jeans masses of 4.2x10^9 \Msun, in total accounting for 20-30% of the stellar mass of the discs. These findings lend observational support to models that predict larger star-forming regions will form as a result of higher disc velocity dispersions driven-up by cosmological gas accretion.  As a consequence of the changes in global environment, it may be predicted that star-forming regions at high redshift should not resemble star-forming regions locally. Yet despite the increased sizes and dispersions, high-z star-forming regions and HII regions are found to follow tight scaling relations over the range z=0-2 for Halpha size, velocity dispersion, luminosity and mass when comparing >2000 HII regions locally and 30 regions at z>1.  While the turbulence of discs may have important implications for the size and luminosity of regions which form within them, the same processes likely govern their formation from high redshift to the current epoch. We are now able to test this conclusion with first results from a new sample of z=0.1-0.2 highly star-forming turbulent galaxies from the Sloan Digital Sky Survey.



Upcoming talks

Featured talks