Found 176 talks archived in Galaxies

Tuesday May 19, 2015
Dr. Enrique Lopez Rodriguez
Universidad de Texas en San Antonio


Little is known about the mid-infrared (MIR) polarization at high-angular resolution of Active Galactic Nuclei (AGN), however, the polarimetric mode of CanariCam on the 10.4-m Gran Telescopio CANARIAS has opened a new window to reveal its core. We have found a variety of results: 1) A Highly polarized synchrotron emission in the core of Cygnus A; 2) a very complex MIR polarization structures in and around the core of NGC 1068; and 3) a very low polarized core of Mrk 231. In this talk, I will present new CanariCam polarimetric results on several AGN which provide key information on our understanding of the AGN structure and jet formation.

Thursday May 7, 2015
Dr. Jiasheng Huang
National Astronomical Observatories of China, Beijing and Harvard-Smithsonian Centre for Astrophysics, Cambridge, MA


 I will present a multiwavelength study of a large MIPS selected galaxies and satisfy a certain IRAC color criterion. Stellar population modeling and IRS spectra together demonstrate that the double criteria used to select this sample have efficiently isolated massive star-forming galaxies at /z/ ~ 1.9. This is the first starburst (SB)-dominated ultraluminous infrared galaxies (ULIRG) sample at high redshift with total infrared luminosity measured directly from Spitzer, Herschel FIR and millimeter photometry, and as such gives us the first accurate view of broadband spectral energy distributions for SB galaxies at extremely high luminosity and at all wavelengths. The HST images in optical and NIR bands show that most objects have very extended morphologies in the rest-frame ultraviolet and optical band, thus extended distribution of PAH molecules. We conclude that objects in this sample are ULIRGs powered mainly by SB; and the total infrared luminosity density contributed by this type of objects at /z/ ~ 1.9.

Thursday March 26, 2015
Dr. Stefan Geier


Our Universe is filled with a mind-blowing diversity and different types and appearances of galaxies. Finding out about how they formed and evolved is one of the most challenging tasks in astronomy. When looking about 10 billion years back, to an epoch about 3 billion years after the big bang, we can see galaxies at earlier stages of their lives. In this talk, studies of different kinds of galaxies in the early universe will be presented. Two examples of the very intriguing population of massive quiescent z~2 galaxies were analyzed in terms of their stellar populations and morphologies. As the spectroscopic sample is still small, especially for galaxies at the faint end of the luminosity function, we make use of the biggest available "telescopes" in the universe: We search for red z~2 galaxies whose apparent brightnesses have been boosted by the Gravitational Lensing effect of intermediate redshift galaxy clusters with available mass models. Our findings indicate older ages for these galaxies than expected. Also, their remarkable compactness was corroborated. Furthermore, I'm going to present a study of a special case of so-called Damped Lyman-alpha Absorbers (DLAs), with two intervening galaxies in the line of sight of a higher-redshift QSO, which is also one example of only about a dozen known galaxy counterparts of a DLA. It fits into the emerging paradigm that galaxies which are responsible for higher metallicity DLAs are more massive and luminous than typical DLA galaxies. Motivated by that particular discovery, during the past few years we have undertaken a survey targeting candidate dust-reddened quasars missing in the sample from Sloan Digital Sky Survey. Spectroscopic follow-up with the NOT and the NTT has demonstrated a very high success rate of our selection (>90%). The main motivation is to search for quasars reddened by foreground dusty galaxies and we have found several such examples. We have also serendipitously found quasars with abnormal, very UV-steep extinction curves as well as a large number of broad absorption line quasars (BALs). The latter allow us to study the dependence of the BAL QSO population on redshift, reddening and luminosity. The results show a strong evolution of the BAL QSO fraction with cosmic time, with a peak at z~2.5 where several quantities in the Universe are also found to peak or vary. In addition,the dependence of this fraction with reddening and luminosity provides new constraints on the models for broad absorption origin in quasars. We are currently carrying out a pilot study of a search for even redder quasars selected from a combination of SDSS, UKIDSS and WISE photometry with the aim of selecting very dust-obscurred quasars or high-redshift BALs at z>2. Preliminary results from the first run et the NOT in March 2015 of the brightest candidates show very promising results which will also be briefly shown in the talk.

Tuesday March 24, 2015
Dr. Antonio Hernán-Caballero


Recent works show that the restframe colours of X-ray selected AGN host galaxies at z~1 are no different from those of inactive galaxies once stellar mass selection effects are taken into account. However, there is a clear deficit of AGN among quiescent galaxies, and the average star formation rates of AGN hosts are comparable or higher than those of inactive star-forming galaxies. These apparently contradictory findings could be a consequence of higher extinction in star-forming AGN hosts compensating for their younger stellar populations in observed colours. In this talk I will present a new method of extinction correction that breaks the degeneracy with stellar age and metallicity by comparing the restframe U-V colour with measurements of the Dn(4000) index on intermediate band photospectra from SHARDS. I'll show that the distribution of extinction corrected U-V colours and Dn(4000) for AGN hosts at z<1 is significantly different from that of comparison samples of inactive galaxies, with a clear deficit of AGN in intrinsic red galaxies and a higher prevalence among those with intermediate age stellar populations.

Thursday March 12, 2015
Prof. Annette Ferguson
Royal Astronomical Observatory of Edinburgh, UK


Evidence is mounting for the presence of complex low surface brightness structures in the outer regions of galaxies. While the most spectacular examples are provided by systems hosting coherent debris streams, the most common examples may be extremely diffuse stellar envelopes. Wide-field imagers on large telescopes are allowing us to quantitatively explore the resolved stellar populations in these components within and well beyond the Local Group. I will highlight some recent  results from our work and discuss the insight these outer structures provide on understanding massive  galaxy assembly.  I will also discuss how we are using deep HST studies of M31's outer regions to probe its evolutionary history in unprecedented detail.

Thursday February 26, 2015
Dr. Julie Wardlow
Dark Cosmology Centre (Copenhagen)



Over the past ~20 years the high-redshift Universe has been increasingly opened to scrutiny at far-infrared wavelengths, where cool dust emission from star-formation dominates. The dusty star-forming galaxies (DSFGs) and submillimeter galaxies (SMGs), selected at these wavelengths likely represent an important, but short-lived phase in the growth of massive galaxies. These DSFGs often have star-formation rates in excess of ~1000 solar masses per year and are confirmed out to at least z~6, although their redshifts and high dust contents make them faint and difficult to study at other wavelengths. Now, using data from the Herschel Space Observatory we have identified a population of DSFGs that are strongly gravitationally lensed and therefore magnified and available for unprecedented multi-wavelength scrutiny. I will describe how this important gravitationally lensed population is identified, and present and interpret the data from our extensive multi-wavelength, multi-facility follow-up studies. I will also present follow-up observations of an intriguing sample of the highest redshift DSFGs (z>4) that are also selected via Herschel data, and that are proving troublesome to explain in galaxy formation simulations.


Tuesday January 27, 2015
Mr. Ben Hendricks
Univ of Heidelberg


Dwarf spheroidal (dSph) galaxies are the smallest, closest and most abundant galaxies in the Universe and therefore excellent laboratories to study star formation (SF) history and chemical evolution on the smallest
scales. However, the complexity within---and variations between---these objects are poorly understood, not least because the vast majority of present-day data is restricted to the most central regions of these systems.
Thus, the scope of this talk is to present the results from our chemodynamical analysis (i.e., combining chemical abundances, stellar
ages, and precise dynamical measurements from high-resolution spectra) of the outer regions of Fornax and to put them in a general context of the chemical evolution in dSphs and their key-regulating factors. On this basis, possible (and impossible) evolutionary scenarios for Fornax are discussed and compared with model predictions.  Furthermore, Fornax is one amongst very few dSphs with an own globular cluster population. In the last part of my talk I use the results from our analysis and discuss
ongoing projects designed to address the impact of globular clusters on the evolution of this galaxy, and vice versa.

Thursday January 15, 2015
Dr. Rosa Calvi


One of the important questions in extragalactic astronomy concerns the debate between nature and nurture scenarios. Are the observed galaxy local properties the end product of the different conditions at birth or the product of the interactions, or other local processes, since a galaxy is not an isolated object? In this talk I will present the results of the analysis of some galaxy properties, morphologies and mass functions, obtained comparing, for the first time in a consistent manner, galaxies in the widest range of environments at low redshift (groups, clusters, binary systems, isolated galaxies). The aim was to understand the most important factors that drive galaxy evolution, trying to disentangle the importance of galaxy mass and global environment.

In addition I will present the first results concerning the two projects in which I am involved at IAC: the ALBA project, aimed to explore the signs of a proto-cluster at z~6.5, and the analysis of dust emission of a sample of local tadpole galaxies. 

Thursday December 18, 2014
Dr. Gustavo Bruzual
Universidad Nacional Autónoma de México (UNAM)


Stellar population synthesis has reached a high degree of sophistication that has been exploited to understand to a certain extent the mechanisms of formation, assembling, and evolution of galaxies in our universe. Progress is based on solid results in the field of stellar evolution and spectrophotometric observations of large numbers of stars and galaxies. However, there are certain phases of stellar evolution, like the thermally pulsing asymptotic giant branch (TP-AGB) phase, the Wolf-Rayet stage, and the presence of interacting binaries, whose treatment is either ignored or extremely simplified in galaxy evolution models due to the uncertainties in their description. In this talk I will present results from models that add the state of the art in the treatment of these evolutionary phases to traditional population synthesis models. 

Tuesday December 9, 2014
Dr. Rodriguez Ardila
Laboratorio Nacional de Astrofísica (Itajubá, Brasil)


FeII comprises up to one third of the line emission in AGNs. For that reason it is an important coolant that needs to be taken into accountto fully understand the energetics of the broad line region (BLR). In thistalk I will discuss new approaches to study the excitation mechanisms ofthe FeII based on a semi-empirical template we derived in thenear-infrared region (NIR). We correlate the strength of the NIR andoptical iron lines to assess the relative contribution of the differentmechanisms that produces that emission. We found that in all casesLy_alpha fluorescence plays an important role, being a process that needsto be considered in any approach aimed at understanding this complexemission. We also compare the width of the individual FeII lines with thatof other lines emitted in BLR. Our results confirm previous assumptionsand results from variabilty studies that the gas responsible for the FeIIemission is the outer portion of the BLR.

Upcoming talks

Featured talks