Found 107 talks archived in Telescopes and instrumentation

t_HWMYjn-Tc-thumbnail
Wednesday February 3, 2010
Dr. Ignacio Romero Trujillo, Dr. Begoña García Lorenzo
University of Cranfield, UK
Instituto de Astrofísíca de Canarias, Spain

Abstract

There are many parameters accounting for the quality of an astronomical site, namely seeing, cloud cover, ground winds, high-altitude winds, etc. The water vapor content is the main parameter affecting the IR quality of astronomical sites. The fraction of nights with good IR conditions (small column of water vapor) as a function of the epoch of the year will allow an optimal scheduling of telescope observing time. Global Positioning System (GPS) is an increasingly operational tool for measuring the precipitable water vapor (PWV). In this seminar, we briefly describe the procedure to estimate the PWV through GPS and we present the statistical results derived from a 7.5-year long time series of PWV estimations derived from GPS at the Roque de los Muchachos Observatory.


d1UnZ603hj4-thumbnail
Thursday January 28, 2010
Dr. Nicolas Lodieu
Instituto de Astrofísica de Canarias, Spain

Abstract

In this Breaking News seminar, I will describe our project dedicated to the search for ultracool low-metallicity dwarfs (or subdwarfs) in the large-scale databases. The highlight of the seminar is the discovery of a mid-L subdwarf, the fifth known to date, and the first one identified in the UKIRT Infrared Deep Sky Survey (UKIDSS). The spectroscopic nature of this subdwarf was confirmed with data obtained with GTC/OSIRIS in April 2009.

-thumbnail
Tuesday January 26, 2010
Prof. George Miley
Sterrewacht, Univ. Leiden, the Netherlands

Abstract

Luminous high-redshift radio galaxies (HzRGs) are associated with the most massive known galaxies in the early Universe. These galaxies have the properties expected of the progenitors of dominant galaxies in rich clusters.
I shall describe the properties of HzRGs and demonstrate how they can be used to study the formation and evolution of galaxies and clusters. I shall also show how LOFAR, the new European radio telescope, can be used to extend these probes into the epoch of reionisation.


kTztQ0DKNRM-thumbnail
Monday November 16, 2009
Dr. Clementine Bechet
European Southern Observatory, Garching, Germany

Abstract

The ambitious astrophysical objectives of the Extremely Large Telescopes (ELTs) will be achievable only with innovative Adaptive Optics (AO) systems to correct for the wavefront distortions induced by the turbulence in the atmosphere. One of the key components of an AO system is the wavefront reconstruction, which is a real-time estimate of the wavefront distortions above the telescope aperture from data. This reconstruction can be described by an inverse problem approach (IPA),taking advantage of the modeling of second-order statistics of both turbulence and data noise.
First, the benefits of the IPA to wavefront reconstruction is enhanced for two particularities of the ELTs: very high number of estimated parameters (~104) and elongated spots on the sensor for AO using Laser Guide Stars. Moreover, this IPA can be implemented with a fast algorithm for high number of degrees of freedom, which makes it a candidate for the implementation on a future AO system of the E-ELT. The correction performance in closed-loop AO has also been assessed thanks to end-to-end simulations of single-conjugate AO and Ground-Layer AO with Laser Guide Stars on the E-ELT.

dXJywxPhltM-thumbnail
Friday November 13, 2009
Prof. Hiroshi Karoji
SUBARU Telescope, National Astronomical Observatory of Japan

Abstract

In 2006, NAOJ proposed to construct the Hyper Suprime-Cam (HSC) as a second generation instrument for Subaru telescope. This is a very wide-field camera covering 1.5 degrees of sky at a time. The focal plane area to be covered will be around 530mm. A total of 110 2kx4k CCD detectors will be placed adjacent to each other in order to cover this large field of view. The HSC will be a prime focus camera, and will enlarge the current field of view (FOV) of Subaru, as provided by the first generation Suprime Cam, by a factor of 10. The HSC will be the largest CCD camera in the world, and will have a total performance, as measured by the product of the telescope aperture area and the field of view, which will exceed that of all other telescopes. Only the planned LSST will have a better performance, but that will be in a time frame of three or more years later than the HSC. The main scientific goal of the HSC will be weak lensing studies over large areas of the sky. Approximately 1000 square degrees will be surveyed every year. Weak lensing distortions of background galaxies due to the large scale structure, so called cosmic shear, will be examined. From statistical properties of cosmic shear, the properties of dark energy will be constrained. Along with the weak lensing study, a large survey project is planned to use more than 200 nights of HSC and Subaru to cover interesting science topics with the large dataset.

-thumbnail
Wednesday November 11, 2009
Dr. Jörg Büchner
Max-Planck Institut für Sonnensystemforschung, Germany

Abstract

The dynamics of the solar atmosphere is largely controlled by its magnetic coupling to the photosphere of the Sun. Since the solar magnetic field is complex, numerical simulation must be utilized to investigate the coupling processes. Results will be shown of treating this way the two unresolved issues - the heating of the corona and the acceleration of the solar wind.

YrI3pQKfOIc-thumbnail
Friday November 6, 2009
Prof. Kazunari Shibata
Hida Observatories, Kyoto University, Japan

Abstract

The 3.8m optical and infrared telescope, which is Japan's first segmented mirror telescope, is now being constructed using the world's first super high precision, high speed grinding technology and the world's first truss structure drive system. This is the joint project between Kyoto University, Nagoya University, National Astronomical Observatory, and Nano-Optonics Energy (private company) with the budget of the Nnao-Optonics Energy and Dr Hiroshi Fujiwara (CEO of the Nano-Optonics Energy). The telescope will be completed in 2012 and installed in Okayama, and will become the biggest optical and infrared telescope in east Asia. The technologies for making this telescope such as (1) grinding technology, (2) segmented mirror, and (3) truss structure drive system are also basic technologies for the future extremely large telescope such as the 30m telescope. The scientific objective of the telescope is the search for the transient objects (gamma ray bursts, black hole binaries, stellar flares) and the extra solar planets. How this project has emerged and developed will be discussed in detail, including also the discussion about the possible future international collaboration.

Pj-1BhDY3Sg-thumbnail
Saturday October 24, 2009
Dr. Johan Knapen
Instituto de Astrofísica de Canarias, Spain

Abstract

Galaxies are the basic building blocks of the Universe, and understanding their formation and evolution is crucial to many areas of current astrophysical research. Nearby galaxies, being the 'fossil record' of the evolution of galaxies, provide a wealth of detail to test extensively the current models of galaxy formation and evolution. A galaxy's structure is linked to both its mass and evolutionary history. Probing galactic structure requires understanding the distribution of stars among galaxies of all types and luminosities across the full range of environments. We are performing a complete volume-limited (d < 40 Mpc) survey of over 2200 nearby spiral, elliptical and dwarf galaxies at 3.6 and 4.5 μ in the Spitzer Warm Mission to address fundamental questions of galactic structure that are united by the common need for deep, uniform, unbiased maps of the stellar mass in galaxies. I will introduce the survey, give examples of images and of the science that can be done, and explain how other researchers at the IAC can become involved in analysing these exciting data.

bAdyyB5otI8-thumbnail
Wednesday September 23, 2009
Dr. Lisa Mazzuca
NASA, Goddard Space Flight Center, USA

Abstract

The Hubble Space Telescope has been given new life with the successful Servicing Mission 4 (SM4). The goal of each servicing mission to the telescope has been to replace instruments and other system components that would enable better science productivity and enlightenment. But never before has the notion of repairing existing broken instruments in the telescope been considered because of the complexity of such an activity... until now. During SM4, two new scientific instruments were installed – the Cosmic Origins Spectrograph (COS) and Wide Field Camera 3 (WFC3); two failed instruments, the Space Telescope Imaging Spectrograph (STIS) and the Advanced Camera for Surveys (ACS), were brought back to life by the first ever on-orbit repairs; and, the spacecraft original batteries were replaced with new ones that will keep HST powered well into the next decade. But what will the scientific observations look like? The evidence is here with the release of the early observations from each instrument, and the news is wonderful!

-thumbnail
Monday May 18, 2009
Dr. Francisco Prada
Instituto de Astrofísica de Andalucía, Spain

Abstract

In the next decade astronomers will attempt to constrain the nature of dark matter, dark energy and the (perhaps inflationary) processes which generated structure as well as understanding the astrophysics of galaxy evolution and the formation and evolution of our Milky Way and Local Group. Large-scale spectroscopic surveys on large telescopes will be critical to achieving reliable results in all these areas. The desideratum is a survey which obtains the spectra of a few times 105 galaxies from the visible into the near IR at each of a sufficient number of redshift slices that one can follow the evolution of all interesting populations. Large samples of different stellar populations in different Local Group environments will also be targeted. I will summarize the outline of a multi-object 0.4-1.7 μ spectrograph for GTC and discuss the status of miniSIDE. MiniSIDE has been conceived as a pathfinder for a large fiber-fed survey spectrograph but will be a scientific instrument on its own, capable of providing high quality science data and be competitive within the instrumentation suite of GTC. A Letter of Intent has been submitted recently to propose miniSIDE as a facility science instrument for GTC.