Found 55 talks archived in Planetary systems

mmhb317oBBA-thumbnail
Friday November 19, 2010
Miss Victoria Moulds
Queen's University Belfast, Ireland

Abstract

The RV method is responsible for discovering the majority of planets that orbit stars other than our Sun. However, one problem with this technique is that stellar jitter can cause RV variations that mimic or mask out a planet signature. There have been several instances in the past when stars have shown periodic RV variations which are firstly attributed to a planet and later found to be due to stellar spots, e.g. BD+20 1790 (Figueira, P et al. 2010) and CJ674 (Turnball et al. 204). So far the method of choice to overcome these problems is to avoid observing stars which show levels of high activity. However, this does not solve the problem: it merely avoids it. We have therefore been developing a code which separates out stellar jitter from the RVs to enable active planets to be looked at for planets. I will talk about our technique as well as show some exciting preliminary results.

cE9_jqhAuU4-thumbnail
Thursday September 30, 2010
Dr. Julia de León
Instituto de Astrofísica de Andalucía, Spain

Abstract

Understanding the composition and the nature of any asteroid approaching the Earth, and consequently potentially hazardous, is a matter of general interest, both scientific and practical. The potentially hazardous asteroid 1999 RQ36 is especially accessible to spacecraft and is the primary target of NASA's OSIRIS-REx sample return mission. Spectra of this asteroid point to the most primitive meteorites (CIs and CMs) as the most likely analogs. Asteroid (3200) Phaethon is also particularly interesting. Together with 2005 UD and 2001 YB5, is one of the only 3 near-Earth asteroids with associated meteor showers, which mostly come from comets. There is evidence of the presence of hydrated minerals on its surface, usually associated with organic material. Both asteroids are classified as "B". B-type asteroids are found mostly in the middle and outer main belt and are believed to be primitive and volatile-rich. We combine dynamical and spectral information to identify the most likely main-belt origin of these two objects.


_SwzSrRjCSE-thumbnail
Thursday September 23, 2010
Dr. Javier Licandro
Instituto de Astrofísica de Canarias, Spain

Abstract

In this talk we present spectroscopy of asteroids 24 Themis and 65 Cybele in the 2-4 μ region obtained with the NASA 3.5m IRTF telescope. Their spectra are very similar, and present the typical water ice band at 3.1 μ and additional absorption bands in the 3.2-3.4 μ region that can be attributed to solid organics, showing that there is a small amount of water ice and solid organics widely distributed across their surface. Spectra in the 6-25 μ region obtained with SPITZER of 65 Cybele also show that its surface is covered by a fine anhydrous silicate grains mantle as other outer belt asteroids like the Trojans are. This dust mantle, with a small amount of water ice and complex organic solids, is similar to comet surface where non-equilibrium phases coexist. The presence of water-ice and anhydrous silicates is indicative that hydration did not happened or is incomplete, suggesting that the temperatures were always sufficiently low. This is the first detection of water ice and and solid organics in the surface of an asteroid and suggest that these materials are much more abundant than expected in the surface of asteroids with semi-major axis a > 3 AU. The cosmogonical and astrobiological relevance of this discovery will be discussed.

081EWenvReI-thumbnail
Tuesday March 30, 2010
Dr. Iván Ramírez
Max Planck Institute for Astrophysics, Germany

Abstract

It has been recently shown that the chemical composition of the Sun is anomalous when compared to most nearby stars of very similar fundamental parameters, so-called solar twins. Compared to these stars, the Sun is deficient in refractory elements relative to volatiles, a finding that we speculate is a signature of the terrestrial planet formation that occurred around the Sun but not in the majority of solar twins. I will discuss these and newer related results, the strengths and weaknesses of our planet formation interpretation, as well as our plans for future observations that can help us better understand the nature of the abundance trends found.


yRAwvyRdsOU-thumbnail
Friday March 26, 2010
Dr. Josep María Trigo
Instituto de Ciencias del Espacio, Spain

Abstract

Short-lived nuclides (SLNs) were incorporated to the solar nebula at the time of condensation of the first minerals from the vapor phase. The study of the isotopic ratios preserved in primitive meteorites provides clues on the stellar sources that produced these SLN, being supernovae and Asymptotic Giant Branch stars (AGBs) candidates. On the other hand, stellar grains were also preserved in primitive meteorites and Interplanetary Dust Particles (IDPs). Their survival demonstrates that the solar nebula was not so hot as first researchers proposed in the 60s. Interestingly, the available stellar grain abundances in primitive meteorites (chondrites) depend of the physico-chemical processes suffered by their parent bodies: metamorphism, aqueous alteration, etc. An evaluation of the primordial presolar grain abundances in the protoplanetary disk at the time these materials formed would allow a comparison with the derived from theoretical models. For gaining insight on these processes we should study the most primitive meteorites (the chondrites), but also even more pristine materials arrived from comets, particularly these captured in the stratosphere as IDPs, or collected from 81P/Wild 2 comet by Stardust (NASA) spacecraft.

2_Grxf6sMnU-thumbnail
Thursday June 18, 2009
Dr. Julia de León
Instituto de Astrofísica de Andalucía, Spain

Abstract

Due to their orbits, near-Earth asteroids (NEAs) have been considered the most evident parent bodies of meteorites. Dynamical models show that NEAs come primarily from the inner and central parts of the Main Belt (MB), and they reach their orbits by means of gravitational resonances (mainly ?6 and 3:1). This part of the MB is dominated by spectral types S and Q, also the most common spectral types among the NEA population (~60%), and correspond to objects composed of silicates. Their reflectance spectra show very characteristic absorption bands that can be used to infer their mineralogical composition applying different methods of analysis. Those absorption bands are also present in the spectra of the most abundant class of meteorites (~80%), the ordinary chondrites (OC). In order to better understand the connection between MB asteroids, NEAs and OCs, we undertook a spectroscopic survey of asteroids between 2002 and 2007, using the telescopes and instrument facilities of "El Roque de los Muchachos" Observatory, in the Canary Islands. The survey contains visible and near-infrared spectra (0.5 - 2.5 µm) of a total of 105 asteroids. We have applied a method of mineralogical analysis based on spectral parameters to our sample of NEAs, and also to a sample of 91 MBs and 103 OCs obtained from different databases. We have found some significant compositional differences between NEAs, MBs and OCs. The most remarkable one is that NEAs compositionally differ from the whole set of OCs, and show a more olivine-rich composition, similar to what it is found for LL chondrites (only 8% of the falls). This result suggests that S type NEAs are not the immediate precursors of ordinary chondrites, as it was believed. We consider the size of the objects as the key factor to explain this difference. NEAs are km-sized objects, while meteorites are meter tocm sized objects. Combining the information obtained from the dynamical models and the drift in semimajor axis of the smaller objects due to their thermal intertia (Yarkovsky effect), we set out a possible scenario for the formation and the transport routes of NEAs and meteorites that could explain this compositional difference in a plausible way.

hTy6Jtk3xg4-thumbnail
Friday June 12, 2009
Dr. Enric Pallé Bago
Instituto de Astrofísica de Canarias, Spain

Abstract

Of the 342 planets discovered so far orbiting other stars, 58 'transit' the stellar disk, meaning that they can be detected by a periodic decrease in the starlight flux. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration toward the characterization of exoplanetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflected spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modeling. We also find the fingerprints of the Earth's ionosphere and of the major atmospheric constituent, diatomic nitrogen (N2), which are missing in the reflected spectrum. Our results indicate that the technique of transit spectroscopy of rocky planets may be a very powerful tool for exoplanet atmospheric characterization, and is likely to provide the first detection of a habitable exobiosphere.

QCiIXePbIxI-thumbnail
Sunday May 3, 2009
Dr. Antonio García Muñoz
Instituto de Astrofísica de Canarias, Spain

Abstract

There is a multitude of photochemical processes occurring in a planet's atmosphere. Some of these processes occur with an excess of energy and lead to products in the form of excited atoms, molecules and ions.In specific cases, these gases radiate at wavelengths that range from the UV to the NIR. Solar light is the ultimate cause of these airglow emissions, but traditionally one distinguishes between the day airglow (dayglow), and the night airglow (nightglow). The contribution of the Sun to the excitation of the emitting gas is more immediate in the day glow than in the nightglow. The airglow makes it possible to remotely investigate the chemical kinetics, energetic balance and dynamics of a planetary atmosphere. In the talk, I will go over some of the air glow missions that are known to exist in the atmospheres of the Earth, Mars and Venus. The examples illustrate some of my recent work, and include theoretical modelling and the interpretation of observational data. There is a long record of contributions to the nightglow from observations carried out at ground-based telescopes. I will briefly comment some of these.

2uX1nL5kwN8-thumbnail
Thursday January 29, 2009
Dr. Christopher Watson
University of Belfast, Northern Ireland

Abstract

SuperWASP is the UK's leading extra-solar planet detection program, having detected 22 of the 52 transiting planets known to date. This stems from the instruments ability to image ~500 square degrees every 60sec down to 16th mag (equivalent to the whole visible sky every 20 minutes). Recent experiments have shown that the data from SuperWASP can be reduced with 1 min of it being obtained and with further software development we will be able to identify transient sources within minutes of their observation. Detailed analysis of SuperWASP-N data has shown many populations of transient objects, including rapidly variable objects, which seem to correspond to extremely faint objects in the Sloan survey. Spectroscopy of these objects has proved challenging.

-thumbnail
Wednesday January 21, 2009
Dr. Gian Paolo Tozzi
INAF, Osservatorio di Arcetri, Italy

Abstract

Comets may have played an important role in depositing the organic matter that, between 4,6 and 3,6 billion of years ago, allowed the formation of life on the primordial Earth. Nowadays, many complex organic molecules are routinely observed in the gaseous component of the comae by radio and near-IR observations. However a large quantity of organic matter may be under the form of solid, either as organic grains or organics embedded in silicate grains. The Giotto mission to the 1P/Halley comet revealed for the first time the in-situ presence of organic grains, that accounted for almost 50% of the mass of organic matter in its coma. Remote detection of these organic grains in other comets is very difficult because they rapidly sublimate under the solar radiation and their spectroscopic signatures are hidden within those of the refractory cometary dust. In this talk I will give a short review on the organic matter in comets, I will describe a method for detecting organic grains in comets and I will present recent results.