IACTalks

Back Menu

The Chemistry of the First Stars-Carbon in the Early Universe


Prof. Timothy Beers
Univ. Notredame/JINA

June 21st, 2018


Abstract

The very metal-poor (VMP; [Fe/H] < –2.0) and extremely metal-poor (EMP; [Fe/H] < –3.0) stars provide a direct view of Galactic chemical and dynamical evolution; detailed spectroscopic studies of these objects are the best way to identify and distinguish between various scenarios for the enrichment of early star-forming gas clouds soon after the Big Bang. It has been recognized that a large fraction of VMP (15-20%) and EMP stars (30-40%) possess significant over-abundances of carbon relative to iron, [C/Fe] > +0.7. This fraction rises to at least 80% for stars with [Fe/H] < –4.0. Recent studies show that the majority of CEMP stars with [Fe/H] < –3.0 belong to the CEMP-no sub-class, characterized by the lack of strong enhancements in the neutron-capture elements (e.g., [Ba/Fe] < 0.0). The brightest EMP star in the sky, BD+44:493, with [Fe/H] = –3.8 and V = 9.1, is a CEMP-no star. It shares a common elemental-abundance signature with the recently discovered CEMP-no star having [Fe/H] < –7.8. The distinctive CEMP-no pattern has also been identified in high-z damped Lyman-alpha systems, and is common among stars in the ultra-faint dwarf spheroidal galaxies, such as SEGUE-1. These observations suggest that CEMP-no stars exhibit the nucleosynthesis products of the VERY first generation of stars. We discuss the multiple lines of evidence that support this hypothesis, and describe current efforts to identify the nature of the massive stellar progenitors that produced these signatures.