Seminar
Title: SAUSAGE & TOOTHBRUSH galaxy clusters: Spectral and morphological signatures of cluster merger shocks

Miss Andra Stroe

Abstract

Clusters grow by mergers, events which release huge quantities of energy and can produce massive outward-travelling shock waves that can have an important effect on cluster gas and galaxies. Giant radio relics form at these shock fronts, where accelerated electrons emit synchrotron radiation. Despite the great interest in relics, candidates with simple geometry, undisturbed morphology and high surface brightness are scarce. The complex interaction between the merger, the shock wave and gas is likely a fundamental driver of galaxy evolution. The effects of dense environments have been previously investigated for relaxed clusters, but never before in highly disturbed, merging clusters hosting a relic. The Sausage and the Toothbrush clusters are providing us with the chance to study this phenomenon and its effects on the relativistic particles and the cluster galaxies. In order to address many of the unanswered questions, we use a unique combination of facilities (GMRT, WSRT, INT) to obtain the first cluster-wide, multi-wavelength, multi-method analysis aimed at giving a complete picture of merging clusters hosting relics. We derive physical parameters such as the Mach number and injection spectral index for the diffuse sources in the field. We present index and curvature maps pinpointing spectral trends conclusive for shock acceleration of relativistic particles and test injection models such as the Jaffe-Perola and Kardashev-Pacholczyk. This analysis is fully complemented by an Halpha mapping of the cluster volume and outskirts. We provide the first direct test whether the shock drives or prohibits star formation to decipher the role of the merger in shaping the Halpha luminosity function.

About the talk

Title: SAUSAGE & TOOTHBRUSH galaxy clusters: Spectral and morphological signatures of cluster merger shocks
Miss Andra Stroe
Leiden Observatory
Wednesday November 13, 2013 - 10:30 GMT  (Aula)
en     en
iCalendar Google Calendar